A hierarchical Bayesian approach for reconstructing the initial mass function of single stellar populations

Recent studies based on the integrated light of distant galaxies suggest that the initial mass function (IMF) might not be universal. Variations of the IMF with galaxy type and/or formation time may have important consequences for our understanding of galaxy evolution. We have developed a new stellar population synthesis (SPS) code specifically designed to reconstruct the IMF. We implement a novel approach combining regularization with hierarchical Bayesian inference. Within this approach, we use a parametrized IMF prior to regulate a direct inference of the IMF. This direct inference gives more freedom to the IMF and allows the model to deviate from parametrized models when demanded by the data. We use Markov chain Monte Carlo sampling techniques to reconstruct the best parameters for the IMF prior, the age and the metallicity of a single stellar population. We present our code and apply our model to a number of mock single stellar populations with different ages, metallicities and IMFs. When systematic uncertainties are not significant, we are able to reconstruct the input parameters that were used to create the mock populations. Our results show that if systematic uncertainties do play a role, this may introduce a bias on the results. Therefore, it is important to objectively compare different ingredients of SPS models. Through its Bayesian framework, our model is well suited for this.

[1]  S. Faber,et al.  Old Stellar Populations. IV. Empirical Fitting Functions for Features in the Spectra of G and K Stars , 1993 .

[2]  A. J. Cenarro,et al.  Near-infrared line-strengths in elliptical galaxies: evidence for initial mass function variations? , 2003 .

[3]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[4]  R. D. Carvalho,et al.  SPIDER VIII - constraints on the stellar initial mass function of early-type galaxies from a variety of spectral features , 2013, 1305.2273.

[5]  P. Prugniel,et al.  The X-shooter Spectral Library (XSL) - I. DR1: Near-ultraviolet through optical spectra from the first year of the survey , 2014, 1403.7009.

[6]  Spain.,et al.  Empirical calibration of the near-infrared Ca II triplet — IV. The stellar population synthesis models , 2003, astro-ph/0303297.

[7]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[8]  R. Dav'e The galaxy stellar mass-star formation rate relation: evidence for an evolving stellar initial mass function? , 2007, 0710.0381.

[9]  L. Koopmans,et al.  The stellar IMF in early-type galaxies from a non-degenerate set of optical line indices , 2013, 1305.2873.

[10]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[11]  S. Faber,et al.  Possible M dwarf enrichment in the semistellar nucleus of M31 , 1980 .

[12]  A. J. Cenarro,et al.  Medium-resolution isaac newton telescope library of empirical spectra , 2006 .

[13]  A. J. Cenarro,et al.  Evolutionary stellar population synthesis with MILES – I. The base models and a new line index system , 2010, 1004.4439.

[14]  F. Feroz,et al.  Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses , 2007, 0704.3704.

[15]  J. Falc'on-Barroso,et al.  MIUSCAT: extended MILES spectral coverage – I. Stellar population synthesis models , 2012, 1205.5496.

[16]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[17]  G. Graves,et al.  DISSECTING THE RED SEQUENCE. III. MASS-TO-LIGHT VARIATIONS IN THREE-DIMENSIONAL FUNDAMENTAL PLANE SPACE , 2010, 1005.0014.

[18]  R. Davies,et al.  Systematic variation of the stellar initial mass function in early-type galaxies , 2012, Nature.

[19]  R. Peletier,et al.  Medium-resolution Isaac Newton Telescope library of empirical spectra - II. The stellar atmospheric parameters , 2006, astro-ph/0611618.

[20]  J. Maíz Apellániz Accepted for publication in the Astronomical Journal A recalibration of optical photometry: , 2005 .

[21]  B. Tinsley Stellar evolution in elliptical galaxies. , 1972 .

[22]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[23]  Yue Wu,et al.  ULySS: a full spectrum fitting package , 2009, 0903.2979.

[24]  Evolutionary synthesis of galaxies at high spectral resolution with the code PEGASE-HR. Metallicity and age tracers , 2004, astro-ph/0408419.

[25]  Glenn E. Miller,et al.  The Initial mass function and stellar birthrate in the solar neighborhood , 1979 .

[26]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[27]  Belgium,et al.  Evolution of asymptotic giant branch stars. II. Optical to far-infrared isochrones with improved TP- , 2007, 0711.4922.

[28]  Ricardo P. Schiavon Population Synthesis in the Blue. IV. Accurate Model Predictions for Lick Indices and UBV Colors in Single Stellar Populations , 2007 .

[29]  G. Gilmore,et al.  The distribution of low-mass stars in the Galactic disc , 1993 .

[30]  Pieter van Dokkum,et al.  COUNTING LOW-MASS STARS IN INTEGRATED LIGHT , 2011, 1109.0007.

[31]  David Burstein,et al.  Old stellar populations. 5: Absorption feature indices for the complete LICK/IDS sample of stars , 1994 .

[32]  R. D. Carvalho,et al.  Systematic variation of the stellar initial mass function with velocity dispersion in early-type galaxies , 2012, 1206.1594.

[33]  P. Dokkum,et al.  Evidence of Cosmic Evolution of the Stellar Initial Mass Function , 2007, 0710.0875.

[34]  A. Bolton,et al.  THE INITIAL MASS FUNCTION OF EARLY-TYPE GALAXIES , 2010 .

[35]  J. Falcón-Barroso,et al.  Evolutionary stellar population synthesis with MILES – II. Scaled-solar and α-enhanced models , 2015, 1504.08032.

[36]  W. Ford,et al.  THE INFRARED SPECTRUM OF THE COOL DWARF WOLF 359 , 1969 .

[37]  F. Bonnarel,et al.  The SIMBAD astronomical database. The CDS reference database for astronomical objects , 2000, astro-ph/0002110.

[38]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[39]  B. Tinsley EVOLUTION OF THE STARS AND GAS IN GALAXIES. , 2022, 2203.02041.

[40]  C. Maraston Evolutionary population synthesis: models, analysis of the ingredients and application to high‐z galaxies , 2004, astro-ph/0410207.

[41]  P. Prugniel,et al.  The atmospheric parameters and spectral interpolator for the MILES stars , 2011, 1104.4952.

[42]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[43]  Beatriz Barbuy,et al.  Submitted to: The Astrophysical Journal , 1996 .

[44]  M. Hilker,et al.  From star clusters to dwarf galaxies: the properties of dynamically hot stellar systems , 2008, 0802.0703.

[45]  Saba Sehrish,et al.  CosmoSIS: Modular cosmological parameter estimation , 2014, Astron. Comput..