Biomass and Net Primary Production of Central Amazonian Floodplain Forests

In this chapter the existing knowledge on biomass in floodplain forests and the compounds that contribute to their net primary production (NPP) are presented and discussed in comparison with data from non-flooded upland (terra firme) forests. Fine litterfall in old-growth floodplain forests are similar to litterfall data from terra firme forests. The few existing estimates of root biomass in nutrient-rich white-water floodplain forests (varzea) indicate lower belowground biomasses in floodplain forests than in terra firme forests due to regular flooding which limits the development of deep roots. Along the chronosequence, C-storage in the aboveground coarse live wood biomass (AGWB) of varzea forests indicates a strong increase during the first 50–80 years of successional development, but afterwards no increase in AGWB can be observed. On the other hand C-sequestration in the AGWB of varzea forests declines more than threefold along the successional gradient. In comparison to terra firme forest, the varzea forests have lower C-stocks, but a higher C-sequestration in the AGWB. The estimated aboveground NPP in young successional stages of the central Amazonian varzea is among the highest NPP known for tropical forests, while the NPP of the late succession in the varzea is in the upper range of the NPP of old-growth forests in the terra firme. The available database for nutrient-poor floodplain forests (igapo) is insufficient to estimate their NPP. Climate-growth relationships of tree-ring chronologies of species from central Amazonian terra firme and floodplain forests indicate opposing signals during El Nino years. During these events large areas of terra firme forests release carbon to the atmosphere due to the warmer and drier climate conditions, while the weakened flood-pulse favours tree growth in the floodplain forests which might therefore sequester parts of the climate-induced carbon emissions of terra firme forests.

[1]  Frederic E. Clements,et al.  Nature and Structure of the Climax , 1936 .

[2]  H. Krambeck,et al.  Management criteria for Ficus insipida Willd. (Moraceae) in Amazonian white-water floodplain forests defined by tree-ring analysis , 2007, Annals of Forest Science.

[3]  C. Nobre,et al.  Hydro-climatic and ecological behaviour of the drought of Amazonia in 2005 , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[4]  W. Junk Wetlands of tropical South America , 1993 .

[5]  Michael F. Allen,et al.  Biomass and carbon accumulation in a fire chronosequence of a seasonally dry tropical forest , 2007 .

[6]  Joe Yao Influence of growth rate on specific gravity and other selected properties of loblolly pine , 1970, Wood Science and Technology.

[7]  C. Potter,et al.  Large-scale impoverishment of Amazonian forests by logging and fire , 1999, Nature.

[8]  E. Williams,et al.  The drought of the century in the Amazon Basin: an analysis of the regional variation of rainfall in South America in 1926 , 2005 .

[9]  Donald K. Perovich,et al.  Seasonal evolution of the albedo of multiyear Arctic sea ice , 2002 .

[10]  F. Wittmann,et al.  Tree species composition and diversity gradients in white‐water forests across the Amazon Basin , 2006 .

[11]  J. Schöngart Growth-Oriented Logging (GOL): A new concept towards sustainable forest management in Central Amazonian várzea floodplains , 2008 .

[12]  Paulo Artaxo,et al.  Amazonia and the modern carbon cycle: lessons learned , 2005, Oecologia.

[13]  D. Clark,et al.  Age and Long‐term Growth of Trees in an Old‐growth Tropical Rain Forest, Based on Analyses of Tree Rings and 14C1 , 2003 .

[14]  Manuel R. Guariguata,et al.  Neotropical secondary forest succession : changes in structural and functional characteristics , 2001 .

[15]  Martin Worbes,et al.  Annual growth rings, rainfall‐dependent growth and long‐term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela , 1999 .

[16]  Jeffrey Q. Chambers,et al.  Tree damage, allometric relationships, and above-ground net primary production in central Amazon forest , 2001 .

[17]  R. Houghton,et al.  Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon , 2000, Nature.

[18]  William F. Laurance,et al.  The Future of the Brazilian Amazon , 2001, Science.

[19]  A. Timmermann,et al.  Increased El Niño frequency in a climate model forced by future greenhouse warming , 1999, Nature.

[20]  Henrik Balslev,et al.  Tropical forests : botanical dynamics, speciation and diversity , 1989 .

[21]  M. Keller,et al.  Carbon in Amazon Forests: Unexpected Seasonal Fluxes and Disturbance-Induced Losses , 2003, Science.

[22]  Hans Pretzsch,et al.  Modellierung des Waldwachstums , 2001 .

[23]  I. Amaral,et al.  Floristic study of an igapó floodplain forest in Central Amazonia, Brazil (Tarumã-Mirim, Rio Negro) , 2004 .

[24]  Chris Huntingford,et al.  Amazon Basin climate under global warming: the role of the sea surface temperature , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[25]  F. Stearns Amazonian rain forests: Ecosystem disturbance and recovery: Carl F. Jordan (Ed.), Springer, New York, 1986 (ISBN 0-387-96397-9). 133 pp. Price DM 108.00 , 1989 .

[26]  C. Martius,et al.  On the dynamics, floristic subdivision and geographical distribution of varzea forests in Central Amazonia , 1992 .

[27]  I. Prentice,et al.  C-quest in the Amazon Basin , 1998, Nature.

[28]  P. Parolin Radial gradients in wood specific gravity in trees of Central Amazonian floodplains , 2002 .

[29]  Robert H. Whittaker,et al.  A Consideration of Climax Theory: The Climax as a Population and Pattern , 1953 .

[30]  Elfatih A. B. Eltahir,et al.  ENSO and the natural variability in the flow of tropical rivers , 1997 .

[31]  M. McClain,et al.  The Biogeochemistry of the Amazon Basin , 2001 .

[32]  W. Sombroek Spatial and Temporal Patterns of Amazon Rainfall , 2001 .

[33]  Yadvinder Malhi,et al.  Carbon dioxide transfer over a Central Amazonian rain forest , 1998 .

[34]  M. Worbes,et al.  Holznutzung im Mamirauá-Projekt zur nachhaltigen Entwicklung einer Region im Überschwemmungsbereich des Amazonas , 2001 .

[35]  Martin Worbes,et al.  Wood density of trees in black water floodplains of Rio Jaú National Park, Amazonia, Brazil , 2000 .

[36]  Richard Condit,et al.  Error propagation and scaling for tropical forest biomass estimates. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[37]  R. Condit,et al.  Inferred longevity of Amazonian rainforest trees based on a long-term demographic study , 2004 .

[38]  M. Keller,et al.  Biomass estimation in the Tapajos National Forest, Brazil: Examination of sampling and allometric uncertainties , 2001 .

[39]  J. Marengo,et al.  Interannual variability of surface climate in the Amazon basin , 1992 .

[40]  G. Prance Notes on the vegetation of amazonia III. The terminology of amazonian forest types subject to inundation , 2008, Brittonia.

[41]  F. Wittmann,et al.  Phytogeography, Species Diversity, Community Structure and Dynamics of Central Amazonian Floodplain Forests , 2010 .

[42]  D. Clark ARE TROPICAL FORESTS AN IMPORTANT CARBON SINK? REANALYSIS OF THE LONG-TERM PLOT DATA , 2002 .

[43]  Michael T. Coe,et al.  Long-term simulations of discharge and floods in the Amazon Basin : Large-scale biosphere-atmosphere experiment in Amazonia (LBA) , 2001 .

[44]  D. Clark,et al.  Climate-induced annual variation in canopy tree growth in a Costa Rican tropical rain forest , 1994 .

[45]  R. Betts,et al.  Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model , 2000, Nature.

[46]  J. Chambers,et al.  Ancient trees in Amazonia , 1998, Nature.

[47]  Luiz Antonio Martinelli,et al.  Slow growth rates of Amazonian trees: consequences for carbon cycling. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Javier Tomasella,et al.  Trends in streamflow and rainfall in tropical South America : Amazonia, eastern Brazil, and northwestern Peru , 1998 .

[49]  A. Lugo,et al.  Estimating biomass and biomass change of tropical forests , 1997 .

[50]  J. V. Soares,et al.  Distribution of aboveground live biomass in the Amazon basin , 2007 .

[51]  Ariel E. Lugo,et al.  Biomass Estimation Methods for Tropical Forests with Applications to Forest Inventory Data , 1989, Forest Science.

[52]  R. Betts,et al.  Climate Change, Deforestation, and the Fate of the Amazon , 2008, Science.

[53]  P. Fearnside,et al.  Carbon uptake by secondary forests in Brazilian Amazonia , 1996 .

[54]  J. Terborgh,et al.  The regional variation of aboveground live biomass in old‐growth Amazonian forests , 2006 .

[55]  K. Furch Chemistry of Várzea and Igapó Soils and Nutrient Inventory of Their Floodplain Forests , 1997 .

[56]  C. Martius Density, humidity, and nitrogen content of dominant wood species of floodplain forests (várzea) in Amazonia , 1992, Holz als Roh- und Werkstoff.

[57]  W. Junk,et al.  Geoecological controls on elemental fluxes in communities of higher plants in Amazonian floodplains. , 2001 .

[58]  W. Junk,et al.  How old are tropical trees? The persistence of a myth. , 1999 .

[59]  Viviana Horna,et al.  Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests , 2002, Journal of Tropical Ecology.

[60]  D. Clark Sources or sinks? The responses of tropical forests to current and future climate and atmospheric composition. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[61]  M. Worbes,et al.  Rohdichtestruktur von Jahresringen tropischer Hölzer aus zentralamazonischen Überschwemmungswäldern , 2007, Holz als Roh- und Werkstoff.

[62]  F. Wittmann,et al.  Drought responses of flood-tolerant trees in Amazonian floodplains. , 2010, Annals of botany.

[63]  J. Chambers,et al.  Relationship between soils and Amazon forest biomass: a landscape-scale study , 1999 .

[64]  L. Ferreira,et al.  Are there differences in specific wood gravities between trees in várzea and igapó (Central Amazonia) , 1998 .

[65]  A. Komiyama,et al.  Root biomass of a mangrove forest in southern Thailand. 1. Estimation by the trench method and the zonal structure of root biomass , 1987, Journal of Tropical Ecology.

[66]  M. H. Costa,et al.  Effects of large-scale changes in land cover on the discharge of the Tocantins River, Southeastern Amazonia , 2003 .

[67]  Pavel Kabat,et al.  Volatile organic compound emissions in relation to plant carbon fixation and the terrestrial carbon budget , 2002 .

[68]  J. Terborgh,et al.  Development of habitat structure through succession in an Amazonian floodplain forest , 1991 .

[69]  W. Junk,et al.  Fine root systems and mycorrhizal associations in two central Amazonian inundation forests: Igapó and Várzea , 2010 .

[70]  M. Worbes Growth Rings, Increment and Age of Trees in Inundation Forests, Savannas and a Mountain Forest in the Neotropics , 1989 .

[71]  Philip M. Fearnside,et al.  WOOD DENSITY FOR ESTIMATING FOREST BIOMASS IN BRAZILIAN AMAZONIA , 1997 .

[72]  AMAZONIAN ARTHROPODS RESPOND TO EL NINO , 1996 .

[73]  O. Phillips,et al.  The RAINFOR database: monitoring forest biomass and dynamics , 2007 .

[74]  Q. Ketterings,et al.  Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests , 2001 .

[75]  W. Junk,et al.  Teleconnection between tree growth in the Amazonian floodplains and the El Niño–Southern Oscillation effect , 2004 .

[76]  J. Canadell,et al.  Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems , 2001, Nature.

[77]  W. Junk,et al.  Forecasting the flood-pulse in Central Amazonia by ENSO-indices , 2007 .

[78]  R. Herrera,et al.  Phytomass structure of natural plant communities on spodosols in southern Venezuela: The tall Amazon Caatinga forest , 1983, Vegetatio.

[79]  L. Ferreira,et al.  Central Amazonian floodplains: effect of two water types on the wood density of trees. , 1998 .

[80]  Andrew D. Friend,et al.  Climate change impacts on ecosystems and the terrestrial carbon sink: a new assessment , 1999 .

[81]  Jérôme Chave,et al.  Estimation of biomass in a neotropical forest of French Guiana: spatial and temporal variability , 2001, Journal of Tropical Ecology.

[82]  F. Wittmann,et al.  Sapling communities in Amazonian white‐water forests , 2003 .

[83]  Carlos A. Peres,et al.  Tree Phenology in Adjacent Amazonian Flooded and Unflooded Forests 1 , 2005 .

[84]  Ian D. Rutherfurd,et al.  Historical ENSO teleconnections in the eastern hemisphere , 1994 .

[85]  M. Worbes,et al.  Wood anatomy and tree-ring structure and their importance for tropical dendrochronology , 2010 .

[86]  H. Tian,et al.  Effect of interannual climate variability on carbon storage in Amazonian ecosystems , 1998, Nature.

[87]  W. Sombroek,et al.  Spatial and Temporal Patterns of Amazon Rainfall , 2001 .

[88]  S. Carpenter,et al.  Global Consequences of Land Use , 2005, Science.

[89]  A. Di Fiore,et al.  Increasing biomass in Amazonian forest plots. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[90]  J. Saldarriaga Recovery Following Shifting Cultivation , 1987 .

[91]  J. Foley,et al.  Combined Effects of Deforestation and Doubled Atmospheric CO2 Concentrations on the Climate of Amazonia , 2000 .

[92]  J. Saldarriaga,et al.  Evaluation of regression models for above-ground biomass determination in Amazon rainforest , 1994, Journal of Tropical Ecology.

[93]  Catherine Potvin,et al.  Assessing inter- and intra-specific variation in trunk carbon concentration for 32 neotropical tree species , 2003 .

[94]  M. Swaine,et al.  On the definition of ecological species groups in tropical rain forests , 1988, Vegetatio.

[95]  John Moncrieff,et al.  Carbon Dioxide Uptake by an Undisturbed Tropical Rain Forest in Southwest Amazonia, 1992 to 1993 , 1995, Science.

[96]  Gustav Nebel,et al.  Litter fall, biomass and net primary production in flood plain forests in the Peruvian Amazon , 2001 .

[97]  Jeffrey Q. Chambers,et al.  TROPICAL FORESTS : AN EVALUATION AND SYNTHESIS OF EXISTING FIELD DATA , 2022 .

[98]  F. J. Luizao Litter production and mineral element input to the forest floor in a Central Amazonian forest , 1989 .

[99]  E. Davidson,et al.  The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures , 1994, Nature.

[100]  J. Saldarriaga,et al.  LONG-TERM CHRONOSEQUENCE OF FOREST SUCCESSION IN THE UPPER RIO NEGRO OF COLOMBIA AND VENEZUELA , 1988 .

[101]  S. Almeida,et al.  Análise florística e estrutura de florestas de várzea no estuário amazônico , 2004 .

[102]  D. Nepstad,et al.  Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[103]  J. Chambers,et al.  Tree allometry and improved estimation of carbon stocks and balance in tropical forests , 2005, Oecologia.

[104]  Rolf Aalto,et al.  Episodic sediment accumulation on Amazonian flood plains influenced by El Niño/Southern Oscillation , 2003, Nature.

[105]  M. Piedade,et al.  Biochemistry of Amazonian Floodplain Trees , 2010 .

[106]  Yadvinder Malhi,et al.  Global change: Carbon dioxide goes with the flow , 2002, Nature.

[107]  A. Lugo Comparison of Tropical Tree Plantations with Secondary Forests of Similar Age , 1992 .

[108]  M. Keller,et al.  Selective Logging in the Brazilian Amazon , 2005, Science.

[109]  M. Cochrane Fire science for rainforests , 2003, Nature.

[110]  C. N. Hewitt,et al.  A global model of natural volatile organic compound emissions , 1995 .

[111]  J. Terborgh,et al.  The above‐ground coarse wood productivity of 104 Neotropical forest plots , 2004 .

[112]  R. Monson,et al.  Ecological and evolutionary aspects of isoprene emission from plants , 1999, Oecologia.

[113]  B. Soares-Filho,et al.  Modelling conservation in the Amazon basin , 2006, Nature.

[114]  E. Medina,et al.  Productivity of Tropical Forests and Tropical Woodlands , 1983 .

[115]  Craig Loehle,et al.  Tree life history strategies: the role of defenses , 1988 .

[116]  C. Deser,et al.  Amazon River Discharge and Climate Variability: 1903 to 1985 , 1989, Science.

[117]  P. Zuidema,et al.  Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis , 2005, Oecologia.

[118]  Ursula-Brigitte Schlüter,et al.  Morphologische, anatomische und physiologische Untersuchungen zur Überflutungstoleranz des Baumes Macrolobium acaciaefolium, charakteristisch für die Weiß- und Schwarzwasser-Überschwemmungswälder bei Manaus, Amazonas , 1992 .

[119]  H. Klinge Litter Production in an Area of Amazonian Terra Firme Forest. Part I.Litter - fall, Organic carbon and total Nitrogen Contents of Litter'). , 1968 .

[120]  P. Parolin Life history and environment of Cecropia latiloba in Amazonian floodplains. , 2002, Revista de biologia tropical.

[121]  P. Coley,et al.  River dynamics and the diversity of Amazon lowland forest , 1986, Nature.

[122]  M. Coe,et al.  El Niño–Southern oscillation and the climate, ecosystems and rivers of Amazonia , 2002 .

[123]  C. Berish Root biomass and surface area in three successional tropical forests , 1982 .

[124]  D. Nepstad,et al.  Phenology, litterfall, growth, and root biomass in a tidal floodplain forest in the Amazon estuary , 2004 .

[125]  W. Junk Flood tolerance and tree distribution in central Amazonian floodplains , 1989 .

[126]  O. Phillips,et al.  The changing Amazon forest , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[127]  C. D. Keeling,et al.  Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984–2000 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[128]  D. Anhuf,et al.  Tree species distribution and community structure of central Amazonian várzea forests by remote-sensing techniques , 2002, Journal of Tropical Ecology.

[129]  J. Adis,et al.  THE VEGETATION OF A SEASONAL VÁRZEA FOREST IN THE LOWER SOLIMÕES RIVER, BRAZILIAN AMAZONIA , 1995 .

[130]  Phillips,et al.  Changes in the carbon balance of tropical forests: evidence from long-term plots , 1998, Science.

[131]  G. B. Williamson,et al.  WOOD SPECIFIC GRAVITY GRADIENTS IN TROPICAL DRY AND MONTANE RAIN FOREST TREES , 1989 .

[132]  Silvana Amaral,et al.  Biomass of primary and secondary vegetation in Rondônia, Western Brazilian Amazon , 1997 .

[133]  F. Wittmann,et al.  Wood growth patterns of Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) in Amazonian black-water and white-water floodplain forests , 2005, Oecologia.

[134]  L. Hess,et al.  Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2 , 2002, Nature.

[135]  M. Worbes The Forest Ecosystem of the Floodplains , 1997 .

[136]  M. Cannell,et al.  Woody biomass of forest stands , 1984 .