Carbonate pseudotachylytes: evidence for seismic faulting along carbonate faults

Terra Nova, 23, 187–194, 2011

[1]  R. Sibson,et al.  The habitat of fault-generated pseudotachylyte : Presence vs. absence of friction-melt , 2013 .

[2]  A. Zanchi,et al.  Polyphase thrusting and dyke emplacement in the central Southern Alps (Northern Italy) , 2011 .

[3]  T. Shimamoto,et al.  Evidence of thermal pressurization in high‐velocity friction experiments on smectite‐rich gouges , 2010 .

[4]  T. Shimamoto,et al.  Strong velocity weakening and powder lubrication of simulated carbonate faults at seismic slip rates , 2010 .

[5]  P. Beck,et al.  Clay clast aggregates in gouges: New textural evidence for seismic faulting , 2010 .

[6]  C. Collettini,et al.  Fault zone fabric and fault weakness , 2009, Nature.

[7]  M. Barchi,et al.  The 1997–98 Umbria–Marche earthquake sequence: “Geological” vs. “seismological” faults , 2009 .

[8]  Jean Sulem,et al.  Thermal decomposition of carbonates in fault zones: Slip-weakening and temperature-limiting effects , 2009 .

[9]  G. Collins,et al.  The effect of target lithology on the products of impact melting , 2008 .

[10]  W. Soh,et al.  Coseismic fluid–rock interactions at high temperatures in the Chelungpu fault , 2008 .

[11]  A. Billi,et al.  Fault-related carbonate rocks and earthquake indicators: recent advances and future trends , 2008 .

[12]  Jin-Han Ree,et al.  Ultralow Friction of Carbonate Faults Caused by Thermal Decomposition , 2007, Science.

[13]  G. Kimura,et al.  Earthquake fault rock indicating a coupled lubrication mechanism , 2006 .

[14]  J. Rice,et al.  Thermal pressurization and onset of melting in fault zones , 2006 .

[15]  T. Shimamoto,et al.  Natural and Experimental Evidence of Melt Lubrication of Faults During Earthquakes , 2006, Science.

[16]  R. H. Mitchell CARBONATITES AND CARBONATITES AND CARBONATITES , 2005 .

[17]  G. Prosser,et al.  Modelling the heat pulses generated on a fault plane during coseismic slip: Inferences from the pseudotachylites of the Copanello cliffs (Calabria, Italy) , 2005 .

[18]  C. Wibberley,et al.  Earthquake slip weakening and asperities explained by thermal pressurization , 2005, Nature.

[19]  F. Berra,et al.  Recovery of carbonate platform production in the Lombardy Basin during the Anisian: paleoecological significance and constrain on paleogeographic evolution , 2005 .

[20]  G. Pennacchioni,et al.  Superheated friction-induced melts in zoned pseudotachylytes within the Adamello tonalites (Italian Southern Alps) , 2004 .

[21]  Edgar Dachs,et al.  PET: Petrological Elementary Tools for Mathematica®: an update , 2004, Comput. Geosci..

[22]  R. Sibson Thickness of the Seismic Slip Zone , 2003 .

[23]  T. Nagase,et al.  Fluidization and melting of fault gouge during seismic slip: Identification in the Nojima fault zone and implications for focal earthquake mechanisms , 2003 .

[24]  Gordon R. Osinski,et al.  Impact-generated carbonate melts: evidence from the Haughton structure, Canada , 2001 .

[25]  M. Fanelli,et al.  Calciocarbonatite and magnesiocarbonatite rocks and magmas represented in the system CaO-MgO-CO2-H2O at 0.2 GPa , 2000 .

[26]  G. Graup Carbonate‐silicate liquid immiscibility upon impact melting: Ries Crater, Germany , 1999 .

[27]  A. Lin Glassy pseudotachylyte veins from the Fuyun fault zone, northwest China , 1994 .

[28]  D. Rubie,et al.  Effects of H2O on the Disequilibrium Breakdown of Muscovite+Quartz , 1990 .

[29]  L. Anovitz,et al.  Phase Equilibria in the System CaCO3-MgCO3-FeCO3 , 1987 .

[30]  H. Laubscher Large-scale, thin-skinned thrusting in the southern Alps: Kinematic models , 1985 .

[31]  A. Byrnes,et al.  Subsolidus and melting relations for the join CaCO3-MgCO3 at 10 kbar , 1981 .

[32]  A. Irving,et al.  Subsolidus and melting relationships for calcite, magnesite and the join CaCO3-MgCO3 36 kb , 1975 .

[33]  P. Wyllie Melting Relationships in the System CaO-MgO-CO2-H2O, with Petrological Applications , 1965 .