Γ-limits and relaxations for rate-independent evolutionary problems

This work uses the energetic formulation of rate-independent systems that is based on the stored-energy functionals $${\mathcal{E}}$$ and the dissipation distance $${\mathcal{D}}$$ . For sequences $$({\mathcal{E}}_k)_{k\in {\mathbb{N}}}$$ and $$({\mathcal{D}}_k)_{k\in {\mathbb{N}}}$$ we address the question under which conditions the limits q∞ of solutions $$q_k : [0, T]\to {\mathcal{Q}}$$ satisfy a suitable limit problem with limit functionals $${\mathcal{E}}_\infty$$ and $${\mathcal{D}}_\infty$$ , which are the corresponding Γ-limits. We derive a sufficient condition, called conditional upper semi-continuity of the stable sets, which is essential to guarantee that q∞ solves the limit problem. In particular, this condition holds if certain joint recovery sequences exist. Moreover, we show that time-incremental minimization problems can be used to approximate the solutions. A first example involves the numerical approximation of functionals using finite-element spaces. A second example shows that the stop and the play operator converge if the yield sets converge in the sense of Mosco. The third example deals with a problem developing microstructure in the limit k → ∞, which in the limit can be described by an effective macroscopic model.

[1]  W. Han,et al.  Plasticity: Mathematical Theory and Numerical Analysis , 1999 .

[2]  A. Giacomini,et al.  DISCONTINUOUS FINITE ELEMENT APPROXIMATION OF QUASISTATIC CRACK GROWTH IN NONLINEAR ELASTICITY , 2006 .

[3]  A. Mielke,et al.  A Variational Formulation of¶Rate-Independent Phase Transformations¶Using an Extremum Principle , 2002 .

[4]  Christoph Ortner,et al.  Gradient Flows as a Selection Procedure for Equilibria of Nonconvex Energies , 2006, SIAM J. Math. Anal..

[5]  Michael Ortiz,et al.  A class of minimum principles for characterizing the trajectories and the relaxation of dissipative systems , 2008 .

[6]  Alexander Mielke,et al.  A Mathematical Framework for Generalized Standard Materials in the Rate-Independent Case , 2006 .

[7]  F. Theil Young‐Measure Solutions for a Viscoelastically Damped Wave Equation with Nonmonotone Stress‐Strain Relation , 1998 .

[8]  Andreas Mainik A rate-independent model for phase transformations in shape-memory alloys , 2004 .

[9]  A. Mielke,et al.  On rate-independent hysteresis models , 2004 .

[10]  G. D. Maso,et al.  Quasistatic Crack Growth in Nonlinear Elasticity , 2005 .

[11]  Gilles A. Francfort,et al.  Existence results for a class of rate-independent material models with nonconvex elastic energies , 2006 .

[12]  Y. Brenier Derivation of the Euler Equations¶from a Caricature of Coulomb Interaction , 2000 .

[13]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[14]  Florian Theil,et al.  Single-Slip Elastoplastic Microstructures , 2005 .

[15]  G. D. Maso,et al.  A Vanishing Viscosity Approach to Quasistatic Evolution in Plasticity with Softening , 2006, math/0606718.

[16]  J. Aubin Set-valued analysis , 1990 .

[17]  Alexander Mielke,et al.  Chapter 6 – Evolution of Rate-Independent Systems , 2005 .

[18]  Antonio DeSimone,et al.  Time-dependent systems of generalized Young measures , 2007, Networks Heterog. Media.

[19]  Alexander Mielke,et al.  Deriving new evolution equations for microstructures via relaxation of variational incremental problems , 2004 .

[20]  Florian Theil,et al.  Relaxation of rate-independent evolution problems , 2002, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[21]  S. Serfaty,et al.  Gamma‐convergence of gradient flows with applications to Ginzburg‐Landau , 2004 .

[22]  A. Mielke Flow properties for Young-measure solutions of semilinear hyperbolic problems , 1999, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[23]  Andrea Braides Γ-convergence for beginners , 2002 .

[24]  Pavel Krejčí,et al.  Evolution variational inequalities and multidimensional hysteresis operators. , 2005 .

[25]  ULISSE STEFANELLI,et al.  The Brezis--Ekeland Principle for Doubly Nonlinear Equations , 2008, SIAM J. Control. Optim..

[26]  Ferdinando Auricchio,et al.  A rate-independent model for the isothermal quasi-static evolution of shape-memory materials , 2006, 0708.4378.

[27]  A. Mielke,et al.  Numerical approaches to rate-independent processes and applications in inelasticity , 2009 .

[28]  Alexander Mielke,et al.  A Rate-Independent Model for Inelastic Behavior of Shape-Memory Alloys , 2003, Multiscale Model. Simul..

[29]  Alexander Mielke,et al.  Existence results for energetic models for rate-independent systems , 2005 .

[30]  Laurent Stainier,et al.  A theory of subgrain dislocation structures , 2000 .

[31]  Felix Otto,et al.  Dynamics of Labyrinthine Pattern Formation in Magnetic Fluids: A Mean‐Field Theory , 1998 .

[32]  Ulisse Stefanelli,et al.  A Variational Principle for Hardening Elastoplasticity , 2007, SIAM J. Math. Anal..

[33]  A. Giacomini,et al.  A Γ-Convergence Approach to Stability of Unilateral Minimality Properties in Fracture Mechanics and Applications , 2006 .

[34]  Alexander Mielke,et al.  Two-Scale Homogenization for Evolutionary Variational Inequalities via the Energetic Formulation , 2007, SIAM J. Math. Anal..

[35]  Tomáš Roubíček,et al.  Modelling of Microstructure and its Evolution in Shape-Memory-Alloy Single-Crystals, in Particular in CuAlNi , 2005 .

[36]  Y. Brenier Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations , 1999 .

[37]  H. Attouch,et al.  Variational Convergence for Functions and Operators (Applicable Mathematics Series) , 1984 .

[38]  I. Fonseca,et al.  Oscillations in a dynamical model of phase transitions , 2001, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[39]  Carsten Carstensen,et al.  Effective relaxation for microstructure simulations: algorithms and applications , 2004 .

[40]  A. Mielke,et al.  EXISTENCE AND UNIQUENESS RESULTS FOR A CLASS OF RATE-INDEPENDENT HYSTERESIS PROBLEMS , 2007 .