Modulated Continuous Wave Control for Energy-Efficient Electron-Nuclear Spin Coupling.

We develop energy efficient, continuous microwave schemes to couple electron and nuclear spins, using phase or amplitude modulation to bridge their frequency difference. These controls have promising applications in biological systems, where microwave power should be limited, as well as in situations with high Larmor frequencies due to large magnetic fields and nuclear magnetic moments. These include nanoscale NMR where high magnetic fields achieves enhanced thermal nuclear polarization and larger chemical shifts. Our controls are also suitable for quantum information processors and nuclear polarization schemes.

[1]  Paola Cappellaro,et al.  Continuous dynamical decoupling magnetometry , 2012 .

[2]  E. Hahn,et al.  Nuclear Double Resonance in the Rotating Frame , 1962 .

[3]  M B Plenio,et al.  Noise-Resilient Quantum Computing with a Nitrogen-Vacancy Center and Nuclear Spins. , 2016, Physical review letters.

[4]  C. Degen,et al.  Quantum sensing with arbitrary frequency resolution , 2017, Science.

[5]  G. Uhrig,et al.  Generalization of short coherent control pulses: extension to arbitrary rotations , 2008, 0805.4726.

[6]  A Retzker,et al.  Electron-mediated nuclear-spin interactions between distant nitrogen-vacancy centers. , 2011, Physical review letters.

[7]  M. A. Rol,et al.  Repeated quantum error correction on a continuously encoded qubit by real-time feedback , 2015, Nature Communications.

[8]  N. Aharon,et al.  Continuous dynamical decoupling utilizing time‐dependent detuning , 2016, 1606.03960.

[9]  J. Meijer,et al.  Nuclear magnetic resonance spectroscopy with single spin sensitivity , 2014, Nature Communications.

[10]  Y. Wang,et al.  Quantum error correction in a solid-state hybrid spin register , 2013, Nature.

[11]  M. D. Lukin,et al.  Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic , 2016, Science.

[12]  D. Budker,et al.  Bulk nuclear polarization enhanced at room temperature by optical pumping. , 2012, Physical review letters.

[13]  M. Plenio,et al.  Noise-resilient architecture of a hybrid electron-nuclear quantum register in diamond , 2017, Quantum Science and Technology.

[14]  M. Plenio,et al.  Soft Quantum Control for Highly Selective Interactions among Joint Quantum Systems. , 2017, Physical review letters.

[15]  B. Hensen,et al.  High-fidelity projective read-out of a solid-state spin quantum register , 2011, Nature.

[16]  Nan Zhao,et al.  Sensing single remote nuclear spins. , 2012, Nature nanotechnology.

[17]  M. Lukin,et al.  Enhanced solid-state multispin metrology using dynamical decoupling , 2012, 1201.5686.

[18]  Jan Meijer,et al.  Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor , 2017, Science.

[19]  T. Taminiau,et al.  Detection and control of individual nuclear spins using a weakly coupled electron spin. , 2012, Physical review letters.

[20]  Dieter Suter,et al.  Robust dynamical decoupling for quantum computing and quantum memory. , 2011, Physical review letters.

[21]  Ronald L. Walsworth,et al.  High-resolution magnetic resonance spectroscopy using a solid-state spin sensor , 2017, Nature.

[22]  Jiangfeng Du,et al.  Noise-resilient quantum evolution steered by dynamical decoupling , 2013, Nature Communications.

[23]  Ren-Bao Liu,et al.  Protection of quantum systems by nested dynamical decoupling , 2010, 1006.1601.

[24]  M. Plenio,et al.  Robust dynamical decoupling with concatenated continuous driving , 2011, 1111.0930.

[25]  C. Santori,et al.  Quantum Control over Single Spins in Diamond , 2013 .

[26]  M. Levitt Spin Dynamics: Basics of Nuclear Magnetic Resonance , 2001 .

[27]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[28]  D. D. Awschalom,et al.  Decoherence-protected quantum gates for a hybrid solid-state spin register , 2012, Nature.

[29]  Andrew A. Maudsley,et al.  Modified Carr-Purcell-Meiboom-Gill sequence for NMR fourier imaging applications , 1986 .

[30]  Matthias Steiner,et al.  Single-Shot Readout of a Single Nuclear Spin , 2010, Science.

[31]  M. Markham,et al.  Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor , 2017, Science.

[32]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[33]  D. Maclaurin,et al.  Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. , 2011, Nature nanotechnology.

[34]  Alexandre M. Souza,et al.  Robust dynamical decoupling , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[35]  Martin B Plenio,et al.  Diamond Quantum Devices in Biology. , 2016, Angewandte Chemie.

[36]  G. Uhrig,et al.  Optimization of short coherent control pulses , 2007, 0709.0588.

[37]  M. Plenio,et al.  Detecting and polarizing nuclear spins with double resonance on a single electron spin. , 2013, Physical review letters.

[38]  L. Jiang,et al.  Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond , 2007, Science.

[39]  M. Plenio,et al.  Robust dynamical decoupling sequences for individual-nuclear-spin addressing , 2015, 1506.03766.

[40]  Enhanced Resolution in Nanoscale NMR via Quantum Sensing with Pulses of Finite Duration , 2016, 1611.07894.

[41]  M. Plenio,et al.  Shaped Pulses for Energy-Efficient High-Field NMR at the Nanoscale , 2018, Physical Review Applied.

[42]  Fedor Jelezko,et al.  Dynamical Decoupling of a single electron spin at room temperature , 2010, 1008.1953.

[43]  S. Bennett,et al.  Sensing distant nuclear spins with a single electron spin. , 2012, Physical review letters.

[44]  F. Jelezko,et al.  Observation of coherent oscillations in a single electron spin. , 2004, Physical review letters.

[45]  R Hanson,et al.  Universal control and error correction in multi-qubit spin registers in diamond. , 2013, Nature nanotechnology.

[46]  D. Cory,et al.  Robust decoupling techniques to extend quantum coherence in diamond. , 2010, Physical review letters.

[47]  Martin B. Plenio,et al.  A large-scale quantum simulator on a diamond surface at room temperature , 2012, Nature Physics.

[48]  N. Kalb,et al.  One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment , 2018, Nature Communications.

[49]  G. Uhrig,et al.  Exact results on dynamical decoupling by π pulses in quantum information processes , 2008 .

[50]  J. M. Taylor,et al.  Electron spin decoherence of single nitrogen-vacancy defects in diamond , 2008, 0805.0327.

[51]  M. Plenio,et al.  Diamond-based single-molecule magnetic resonance spectroscopy , 2011, 1112.5502.

[52]  L. Childress,et al.  Supporting Online Material for , 2006 .

[53]  M. Plenio,et al.  Positioning nuclear spins in interacting clusters for quantum technologies and bioimaging , 2015, 1510.02811.