The Interacting Boson Model with SU(3) Charge Symmetry and Its Application to Even–Even N≈Z Nuclei

Abstract The isospin-invariant interacting boson model IBM-3 is analyzed in situations where SU T (3) charge symmetry (or, equivalently, U L (6)  sd symmetry) is conserved. Analytic expressions for energies, electromagnetic transitions, two-nucleon transfer probabilities, and boson-number expectation values are obtained for the three possible dynamical symmetry limits, U (5), SU (3), and O (6). Results found in IBM-3 are related to corresponding ones in IBM-1 and IBM-2. Numerical calculations are presented for f 7/2 -shell nuclei and some features that distinguish IBM-3 from its predecessors IBM-1 and IBM-2 are pointed out.

[1]  J. Elliott,et al.  A new method for IBM3 calculations , 1997 .

[2]  M. Sugita Applications of IBM-3 to the Z ~ N ~ 40 nuclei , 1997 .

[3]  G. Long,et al.  An IBM-3 analysis of the nuclei just beyond the magic numbers N = Z = 28 , 1996 .

[4]  P. Vogel,et al.  Pairing and isospin symmetry in proton-rich nuclei , 1996, nucl-th/9605019.

[5]  J. Elliott,et al.  Electromagnetic operators in IBM-3 and their dependence on the boson number and isospin , 1996 .

[6]  Sen,et al.  Average Entropy of a Quantum Subsystem. , 1996, Physical review letters.

[7]  P. Isacker,et al.  Sum rules for B (M1, 01+ → 1+) strength in IBM-3 and IBM-4 , 1995, nucl-th/9508012.

[8]  G. Martínez-Pinedo,et al.  Full pf shell model study of A=48 nuclei. , 1993, Physical review. C, Nuclear physics.

[9]  Lang,et al.  Monte Carlo evaluation of path integrals for the nuclear shell model. , 1993, Physical review. C, Nuclear physics.

[10]  M. Thompson,et al.  On the role of isoscalar bosons in lighter nuclei , 1989 .

[11]  M. Thompson,et al.  Shell model and IBM descriptions of mixed symmetry or isovector M1 transitions in the titanium isotopes , 1988 .

[12]  M. Thompson,et al.  A microscopically determined IBM 3 hamiltonian , 1987 .

[13]  P. Isacker,et al.  The F-spin symmetric limits of the neutron-proton interacting boson model , 1986 .

[14]  J. Elliott,et al.  An IBM analysis of a single j-shell of neutrons and protons , 1985 .

[15]  D. Bohle,et al.  Further evidence for the new collective magnetic dipole mode in heavy deformed nuclei , 1984 .

[16]  A. Frank,et al.  The U(612) supersymmetric limit of the interacting Boson-Fermion Model , 1984 .

[17]  A. Klein The interacting boson model. , 1982, Science.

[18]  T. Otsuka Rotational states and interacting bosons , 1981 .

[19]  J. Evans,et al.  An intrinsic spin for interacting bosons , 1981 .

[20]  Francesco Iachello,et al.  Interacting Bose-Fermi systems in nuclei , 1981 .

[21]  J. P. Elliot,et al.  An isospin invariant form of the interacting boson model , 1980 .

[22]  Francesco Iachello,et al.  Interacting boson model of collective nuclear states IV. The O(6) limit , 1979 .

[23]  T. Otsuka,et al.  Shell model description of interacting bosons , 1978 .

[24]  A. Arima,et al.  Interacting boson model of collective nuclear states II. The rotational limit , 1978 .

[25]  A. Arima,et al.  COLLECTIVE NUCLEAR STATES AS SYMMETRIC COUPLINGS OF PROTON AND NEUTRON EXCITATIONS , 1977 .

[26]  A. Arima,et al.  Interacting boson model of collective states I. The vibrational limit , 1976 .

[27]  A. Arima,et al.  COLLECTIVE NUCLEAR STATES AS REPRESENTATIONS OF A SU(6) GROUP , 1975 .

[28]  J. Vergados SU(3) ⊃ R(3) Wigner coefficients in the 2s-1d shell , 1968 .

[29]  J. P. Elliott,et al.  Collective motion in the nuclear shell model. I. Classification schemes for states of mixed configurations , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.