The genome of Hyperthermus butylicus: a sulfur-reducing, peptide fermenting, neutrophilic Crenarchaeote growing up to 108 °C

Hyperthermus butylicus, a hyperthermophilic neutrophile and anaerobe, is a member of the archaeal kingdom Crenarchaeota. Its genome consists of a single circular chromosome of 1,667,163 bp with a 53.7% G+C content. A total of 1672 genes were annotated, of which 1602 are protein-coding, and up to a third are specific to H. butylicus. In contrast to some other crenarchaeal genomes, a high level of GUG and UUG start codons are predicted. Two cdc6 genes are present, but neither could be linked unambiguously to an origin of replication. Many of the predicted metabolic gene products are associated with the fermentation of peptide mixtures including several peptidases with diverse specificities, and there are many encoded transporters. Most of the sulfur-reducing enzymes, hydrogenases and electron-transfer proteins were identified which are associated with energy production by reducing sulfur to H2S. Two large clusters of regularly interspaced repeats (CRISPRs) are present, one of which is associated with a crenarchaeal-type cas gene superoperon; none of the spacer sequences yielded good sequence matches with known archaeal chromosomal elements. The genome carries no detectable transposable or integrated elements, no inteins, and introns are exclusive to tRNA genes. This suggests that the genome structure is quite stable, possibly reflecting a constant, and relatively uncompetitive, natural environment.

[1]  Dieter Jahn,et al.  Nanoarchaeum equitans creates functional tRNAs from separate genes for their 5′- and 3′-halves , 2005, Nature.

[2]  Melvin I Simon,et al.  Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[3]  C. Cambillau,et al.  Structural and Genomic Correlates of Hyperthermostability* , 2000, The Journal of Biological Chemistry.

[4]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[5]  R. Garrett,et al.  Divergent transcriptional and translational signals in Archaea. , 2005, Environmental microbiology.

[6]  Nick V Grishin,et al.  A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. , 2002, Nucleic acids research.

[7]  Q. She,et al.  Archaeal integrases and mechanisms of gene capture. , 2004, Biochemical Society transactions.

[8]  Rolf Bernander,et al.  Three replication origins in Sulfolobus species: synchronous initiation of chromosome replication and asynchronous termination. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[9]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[10]  P. Londei Translational Mechanisms and Protein Synthesis , 2007 .

[11]  A. Hüttenhofer,et al.  Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[12]  H. Klenk,et al.  Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides , 1990, Journal of bacteriology.

[13]  Henri Grosjean,et al.  Identification of BHB splicing motifs in intron-containing tRNAs from 18 archaea: evolutionary implications. , 2003, RNA.

[14]  R. Garrett,et al.  Intercellular mobility and homing of an archaeal rDNA intron confers a selective advantage over intron- cells of Sulfolobus acidocaldarius. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Kim Brügger,et al.  MUTAGEN: Multi-User Tool for Annotating GENomes , 2003, Bioinform..

[16]  S. Brunak,et al.  Improved prediction of signal peptides: SignalP 3.0. , 2004, Journal of molecular biology.

[17]  Sudhir Kumar,et al.  MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment , 2004, Briefings Bioinform..

[18]  Francine B. Perler,et al.  InBase: the Intein Database , 2002, Nucleic Acids Res..

[19]  R. Garrett,et al.  Mobile elements in archaeal genomes. , 2002, FEMS microbiology letters.

[20]  David L. Wheeler,et al.  GenBank , 2015, Nucleic Acids Res..

[21]  L. Schouls,et al.  Identification of genes that are associated with DNA repeats in prokaryotes , 2002, Molecular microbiology.

[22]  R. Garrett,et al.  Sulfolobus genomes: mechanisms of rearrangement and change , 2006 .

[23]  R. Garrett,et al.  The Genome of Sulfolobus acidocaldarius, a Model Organism of the Crenarchaeota , 2005, Journal of bacteriology.

[24]  Wei Yang Portraits of a Y‐family DNA polymerase , 2005, FEBS letters.

[25]  A. Gogos,et al.  Characterization of an 8-Oxoguanine DNA Glycosylase fromMethanococcus jannaschii * , 1999, The Journal of Biological Chemistry.

[26]  Min Pan,et al.  Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. , 2004, Genome research.

[27]  R. Garrett,et al.  Genetic elements in the extremely thermophilic archaeon Sulfolobus , 1998, Extremophiles.

[28]  N. Grishin,et al.  A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action , 2006, Biology Direct.

[29]  Y. Kawarabayasi,et al.  Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. , 1999, DNA research : an international journal for rapid publication of reports on genes and genomes.

[30]  Jef Rozenski,et al.  The RNA Modification Database: 1999 update , 1999, Nucleic Acids Res..

[31]  M. Keller,et al.  Purification and properties of an extremely thermostable membrane-bound sulfur-reducing complex from the hyperthermophilic Pyrodictium abyssi. , 1998, European Journal of Biochemistry.

[32]  P. Green,et al.  Base-calling of automated sequencer traces using phred. I. Accuracy assessment. , 1998, Genome research.

[33]  R. Masui,et al.  Functional reconstitution of a crenarchaeal splicing endonuclease in vitro. , 2005, Biochemical and biophysical research communications.

[34]  C R Woese,et al.  An intron within the 16S ribosomal RNA gene of the archaeon Pyrobaculum aerophilum. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Anders Krogh,et al.  EasyGene – a prokaryotic gene finder that ranks ORFs by statistical significance , 2003, BMC Bioinformatics.

[36]  Donald R. Forsdyke,et al.  Prokaryotes that grow optimally in acid have purine-poor codons in long open reading frames , 2006, Extremophiles.

[37]  R. Garrett,et al.  Viruses of hyperthermophilic Crenarchaea. , 2005, Trends in microbiology.

[38]  R. Garrett,et al.  Genomic comparison of archaeal conjugative plasmids from Sulfolobus. , 2004, Archaea.

[39]  R. Garrett,et al.  Identification of novel non‐coding RNAs as potential antisense regulators in the archaeon Sulfolobus solfataricus , 2004, Molecular microbiology.

[40]  K. Stetter History of discovery of the first hyperthermophiles , 2006, Extremophiles.

[41]  G. Tocchini-Valentini,et al.  Structure, function, and evolution of the tRNA endonucleases of Archaea: an example of subfunctionalization. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[42]  D. Lilley,et al.  DNA Repair , 1998, Nucleic Acids and Molecular Biology.

[43]  Ren Zhang,et al.  Identification of replication origins in archaeal genomes based on the Z-curve method. , 2005, Archaea.

[44]  Kim Brügger,et al.  The Sulfolobus database , 2006, Nucleic Acids Res..

[45]  P. Forterre,et al.  In vivo interactions of archaeal Cdc6/Orc1 and minichromosome maintenance proteins with the replication origin , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[46]  James A. McCloskey,et al.  The RNA modification database , 1997, Nucleic Acids Res..

[47]  M. Ihara,et al.  Initiator tRNAs from archaebacteria show common unique sequence characteristics , 1982, Nature.

[48]  Michael Y. Galperin,et al.  The COG database: new developments in phylogenetic classification of proteins from complete genomes , 2001, Nucleic Acids Res..

[49]  R. Garrett,et al.  Genus-Specific Protein Binding to the Large Clusters of DNA Repeats (Short Regularly Spaced Repeats) Present in Sulfolobus Genomes , 2003, Journal of bacteriology.

[50]  W. Zillig,et al.  NOTES: Hyperthermus butylicus gen. nov., sp. nov., a Hyperthermophilic, Anaerobic, Peptide-Fermenting, Facultatively H2S-Generating Archaebacterium , 1991 .

[51]  J. García-Martínez,et al.  Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements , 2005, Journal of Molecular Evolution.

[52]  F. Lottspeich,et al.  Membrane-bound hydrogenase and sulfur reductase of the hyperthermophilic and acidophilic archaeon Acidianus ambivalens. , 2003, Microbiology.

[53]  R. Garrett,et al.  Non-autonomous mobile elements in the crenarchaeon Sulfolobus solfataricus. , 2001, Journal of molecular biology.

[54]  P Green,et al.  Base-calling of automated sequencer traces using phred. II. Error probabilities. , 1998, Genome research.

[55]  Daniel H. Haft,et al.  A Guild of 45 CRISPR-Associated (Cas) Protein Families and Multiple CRISPR/Cas Subtypes Exist in Prokaryotic Genomes , 2005, PLoS Comput. Biol..

[56]  Akihiko Yamagishi,et al.  Introns in protein‐coding genes in Archaea , 2002, FEBS letters.

[57]  R. Garrett,et al.  A putative viral defence mechanism in archaeal cells. , 2006, Archaea.

[58]  Ken F. Jarrell,et al.  Archaeal Flagella, Bacterial Flagella and Type IV Pili: A Comparison of Genes and Posttranslational Modifications , 2006, Journal of Molecular Microbiology and Biotechnology.

[59]  Maria Jesus Martin,et al.  The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003 , 2003, Nucleic Acids Res..

[60]  E. Delong,et al.  Archaeal pre-mRNA splicing: a connection to hetero-oligomeric splicing endonuclease. , 2006, Biochemical and biophysical research communications.

[61]  M. Rossi,et al.  Identification of an archaeal alpha-L-fucosidase encoded by an interrupted gene. Production of a functional enzyme by mutations mimicking programmed -1 frameshifting. , 2003, The Journal of biological chemistry.

[62]  Rolf Bernander,et al.  Identification of Two Origins of Replication in the Single Chromosome of the Archaeon Sulfolobus solfataricus , 2004, Cell.

[63]  A. Ismaiel,et al.  The ald Gene, Encoding a Coenzyme A-Acylating Aldehyde Dehydrogenase, Distinguishes Clostridium beijerinckii and Two Other Solvent-Producing Clostridia fromClostridium acetobutylicum , 1999, Applied and Environmental Microbiology.

[64]  Mark A. Ragan,et al.  The complete genome of the crenarchaeon Sulfolobus solfataricus P2 , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[65]  P. Green,et al.  Consed: a graphical tool for sequence finishing. , 1998, Genome research.