Image Classification Using Convolutional Neural Networks With Multi-stage Feature

Convolutional neural networks (CNN) have been widely used in automatic image classification systems. In most cases, features from the top layer of the CNN are utilized for classification; however, those features may not contain enough useful information to predict an image correctly. In some cases, features from the lower layer carry more discriminative power than those from the top. Therefore, applying features from a specific layer only to classification seems to be a process that does not utilize learned CNN’s potential discriminant power to its full extent. This inherent property leads to the need for fusion of features from multiple layers. To address this problem, we propose a method of combining features from multiple layers in given CNN models. Moreover, already learned CNN models with training images are reused to extract features from multiple layers. The proposed fusion method is evaluated according to image classification benchmark data sets, CIFAR-10, NORB, and SVHN. In all cases, we show that the proposed method improves the reported performances of the existing models by 0.38%, 3.22% and 0.13%, respectively.

[1]  Y. LeCun,et al.  Learning methods for generic object recognition with invariance to pose and lighting , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[2]  Yann LeCun,et al.  Pedestrian Detection with Unsupervised Multi-stage Feature Learning , 2012, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Yann LeCun,et al.  What is the best multi-stage architecture for object recognition? , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[4]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[5]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[6]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[7]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[8]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.