A SURVEY OF CHAOS EMBEDDED META-HEURISTIC ALGORITHMS

This article presents a comprehensive review of chaos embedded meta-heuristic optimization algorithms and describes the evolution of this algorithms along with some improvements, their combination with various methods as well as their applications. The reported results indicate that chaos embedded algorithms may handle engineering design problems efficiently in terms of precision and convergence and, in most cases; they outperform the results presented in the previous works. The main goal of this paper is to providing useful references to fundamental concepts accessible to the broad community of optimization practitioners. Received: 25 April 2013; Accepted: 24 November 2013

[1]  Ali Kaveh,et al.  Magnetic Charged System Search , 2014 .

[2]  F. Glover,et al.  Handbook of Metaheuristics , 2019, International Series in Operations Research & Management Science.

[3]  A. Kaveh,et al.  Chaotic swarming of particles: A new method for size optimization of truss structures , 2014, Adv. Eng. Softw..

[4]  A. Kaveh,et al.  A new meta-heuristic method: Ray Optimization , 2012 .

[5]  Siamak Talatahari,et al.  Engineering design optimization using chaotic enhanced charged system search algorithms , 2012 .

[6]  A. Gandomi,et al.  Imperialist competitive algorithm combined with chaos for global optimization , 2012 .

[7]  Adil Baykasoglu,et al.  Design optimization with chaos embedded great deluge algorithm , 2012, Appl. Soft Comput..

[8]  Siamak Talatahari,et al.  Chaotic imperialist competitive algorithm for optimum design of truss structures , 2012 .

[9]  B. Alatas Uniform Big Bang–Chaotic Big Crunch optimization , 2011 .

[10]  R. Venkata Rao,et al.  Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems , 2011, Comput. Aided Des..

[11]  Siamak Talatahari,et al.  AN EFFICIENT CHARGED SYSTEM SEARCH USING CHAOS FOR GLOBAL OPTIMIZATION PROBLEMS , 2011 .

[12]  Bilal Alatas,et al.  Chaotic bee colony algorithms for global numerical optimization , 2010, Expert Syst. Appl..

[13]  Bilal Alatas,et al.  Chaotic harmony search algorithms , 2010, Appl. Math. Comput..

[14]  Y. Wang,et al.  Chaotic particle swarm optimization for assembly sequence planning , 2010 .

[15]  A. Kaveh,et al.  A novel heuristic optimization method: charged system search , 2010 .

[16]  Xin-She Yang,et al.  Cuckoo Search via Lévy flights , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[17]  T. Tanino,et al.  Chaos generator exploiting a gradient model with sinusoidal perturbations for global optimization , 2009 .

[18]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[19]  B. Alatas,et al.  Chaos embedded particle swarm optimization algorithms , 2009 .

[20]  Yue Zhou Optimization Control of PID Based on Chaos Genetic Algorithm , 2009 .

[21]  Leifu Gao,et al.  A RESILIENT PARTICLE SWARM OPTIMIZATION ALGORITHM BASED ON CHAOS AND APPLYING IT TO OPTIMIZE THE FERMENTATION PROCESS , 2009 .

[22]  Junjie Yang,et al.  A Precise Chaotic Particle Swarm Optimization Algorithm based on Improved Tent Map , 2008, 2008 Fourth International Conference on Natural Computation.

[23]  Leandro dos Santos Coelho,et al.  Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization , 2008, Expert Syst. Appl..

[24]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms , 2008 .

[25]  G. Cheng,et al.  On the efficiency of chaos optimization algorithms for global optimization , 2007 .

[26]  Mohammad Saleh Tavazoei,et al.  An optimization algorithm based on chaotic behavior and fractal nature , 2007 .

[27]  Caro Lucas,et al.  Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition , 2007, 2007 IEEE Congress on Evolutionary Computation.

[28]  Ibrahim Eksin,et al.  A new optimization method: Big Bang-Big Crunch , 2006, Adv. Eng. Softw..

[29]  Bo Liu,et al.  Improved particle swarm optimization combined with chaos , 2005 .

[30]  Wang Sun-an,et al.  The Comparative Study of Performance of Three Types of Chaos Immune Optimization Combination Algorithms , 2005 .

[31]  Huanwen Tang,et al.  Application of chaos in simulated annealing , 2004 .

[32]  H. Peitgen,et al.  Chaos and Fractals , 2004 .

[33]  Shengsong Liu,et al.  Weighted gradient direction based chaos optimization algorithm for nonlinear programming problem , 2002, Proceedings of the 4th World Congress on Intelligent Control and Automation (Cat. No.02EX527).

[34]  Luigi Fortuna,et al.  Does chaos work better than noise , 2002 .

[35]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[36]  Robert C. Hilborn,et al.  Chaos and Nonlinear Dynamics , 2000 .

[37]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[38]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[39]  Wei-Mou Zheng,et al.  KNEADING PLANE OF THE CIRCLE MAP , 1994 .

[40]  Clare D. McGillem,et al.  A chaotic direct-sequence spread-spectrum communication system , 1994, IEEE Trans. Commun..

[41]  J. Doyne Farmer,et al.  Generalized Lyapunov exponents corresponding to higher derivatives , 1992 .

[42]  H. Schuster Deterministic chaos: An introduction , 1984 .

[43]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[44]  G. Zaslavsky The simplest case of a strange attractor , 1978 .

[45]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[46]  J. Yorke,et al.  Period Three Implies Chaos , 1975 .

[47]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .