NAD biosynthesis: identification of the tryptophan to quinolinate pathway in bacteria.

[1]  Pieter Dorrestein,et al.  Aerobic tryptophan degradation pathway in bacteria: novel kynurenine formamidase. , 2003, FEMS microbiology letters.

[2]  R. Overbeek,et al.  Missing genes in metabolic pathways: a comparative genomics approach. , 2003, Current opinion in chemical biology.

[3]  J. Denu Linking chromatin function with metabolic networks: Sir2 family of NAD(+)-dependent deacetylases. , 2003, Trends in biochemical sciences.

[4]  T. Stone,et al.  Endogenous kynurenines as targets for drug discovery and development , 2002, Nature Reviews Drug Discovery.

[5]  J. Casida,et al.  Kynurenine formamidase: determination of primary structure and modeling-based prediction of tertiary structure and catalytic triad. , 2002, Biochimica et biophysica acta.

[6]  V. Calderone,et al.  Cloning of human 3-hydroxyanthranilic acid dioxygenase in Escherichia coli: characterisation of the purified enzyme and its in vitro inhibition by Zn2+. , 2002, Biochimica et biophysica acta.

[7]  Marco Leyton,et al.  The role of serotonin in human mood and social interaction Insight from altered tryptophan levels , 2002, Pharmacology Biochemistry and Behavior.

[8]  S. Oei,et al.  A cellular survival switch: poly(ADP-ribosyl)ation stimulates DNA repair and silences transcription. , 2001, Bioessays.

[9]  T. Bugg,et al.  Solving the riddle of the intradiol and extradiol catechol dioxygenases: how do enzymes control hydroperoxide rearrangements? , 2001 .

[10]  P. Dorrestein,et al.  The biosynthesis of nicotinamide adenine dinucleotides in bacteria. , 2001, Vitamins and hormones.

[11]  J. Carver,et al.  Polypeptide modification and cross-linking by oxidized 3-hydroxykynurenine. , 2000, Biochemistry.

[12]  K. M. Dolan,et al.  Functional comparison of the NAD binding cleft of ADP-ribosylating toxins. , 2000, Biochemistry.

[13]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[14]  L. Chylack,et al.  3-Hydroxykynurenine and 3-hydroxyanthranilic acid generate hydrogen peroxide and promote alpha-crystallin cross-linking by metal ion reduction. , 2000, Biochemistry.

[15]  A. Isacchi,et al.  Functional characterization and mechanism of action of recombinant human kynurenine 3-hydroxylase. , 2000, European journal of biochemistry.

[16]  R. Truscott,et al.  Human Lens Coloration and Aging , 1999, The Journal of Biological Chemistry.

[17]  A. Chiarugi,et al.  The kynurenine metabolic pathway in the eye: studies on 3‐hydroxykynurenine, a putative cataractogenic compound , 1999, FEBS letters.

[18]  G. Magni,et al.  Enzymology of NAD+ synthesis. , 1999, Advances in enzymology and related areas of molecular biology.

[19]  R. Phillips,et al.  The catalytic mechanism of kynureninase from Pseudomonas fluorescens: evidence for transient quinonoid and ketimine intermediates from rapid-scanning stopped-flow spectrophotometry. , 1998, Biochemistry.

[20]  C. Herbert,et al.  The yeast gene YJR025c encodes a 3‐hydroxyanthranilic acid dioxygenase and is involved in nicotinic acid biosynthesis , 1998, FEBS letters.

[21]  P. Malherbe,et al.  Cloning and functional expression of human kynurenine 3‐monooxygenase , 1997, FEBS letters.

[22]  D. Johnston,et al.  K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons , 1997, Nature.

[23]  B. Dujon,et al.  The nucleotide sequence of Saccharomyces cerevisiae chromosome VII. , 1997, Nature.

[24]  U. Keller,et al.  BIOCHEMISTRY AND GENETICS OF ACTINOMYCIN PRODUCTION , 1997 .

[25]  P. Malherbe,et al.  Isolation and expression of a cDNA clone encoding human kynureninase. , 1996, European journal of biochemistry.

[26]  P. Malherbe,et al.  Molecular Characterisation of Kynurenine Pathway Enzymes , 1996 .

[27]  D. Comings,et al.  Sequence of human tryptophan 2,3-dioxygenase (TDO2): presence of a glucocorticoid response-like element composed of a GTT repeat and an intronic CCCCT repeat. , 1995, Genomics.

[28]  D. Kleiner,et al.  Increased human immunodeficiency virus (HIV) type 1 DNA content and quinolinic acid concentration in brain tissues from patients with HIV encephalopathy. , 1995, The Journal of infectious diseases.

[29]  G. Reynolds,et al.  Increased Concentrations of the Neurotoxin 3‐Hydroxykynurenine in the Frontal Cortex of HIV‐1‐Positive Patients , 1995, Journal of neurochemistry.

[30]  M. Tsubaki,et al.  Tryptophan 2,3-dioxygenase in Saccharomyces cerevisiae. , 1995, Canadian journal of microbiology.

[31]  C. Achim,et al.  Quantitation of human immunodeficiency virus, immune activation factors, and quinolinic acid in AIDS brains. , 1993, The Journal of clinical investigation.

[32]  G. Reynolds,et al.  Increased brain concentrations of a neurotoxin, 3-hydroxykynurenine, in Huntington's disease , 1992, Neuroscience Letters.

[33]  R. Schwarcz,et al.  3-Hydroxyanthranilate oxygenase activity is increased in the brains of Huntington disease victims. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[34]  R. Schwarcz,et al.  Synthesis of Quinolinic Acid by 3‐Hydroxyanthranilic Acid Oxygenase in Rat Brain Tissue In Vitro , 1986, Journal of neurochemistry.

[35]  E. Katz,et al.  Purification and characterization of kynurenine formamidase activities from Streptomyces parvulus. , 1986, Canadian journal of microbiology.

[36]  O. Salcher,et al.  Metabolism of tryptophan by Pseudomonas aureofaciens and its relationship to pyrrolnitrin biosynthesis. , 1980, Journal of general microbiology.

[37]  R. Shiman,et al.  Beef kidney 3-hydroxyanthranilic acid oxygenase. Purification, characterization, and analysis of the assay. , 1976, The Journal of biological chemistry.

[38]  D. T. Sullivan,et al.  The characterization of multiple forms of kynurenine formidase in Drosophila melanogaster. , 1975, Biochimica et biophysica acta.

[39]  V. Ullrich,et al.  The regulatory function of L-kynurenine 3-hydroxylase (EC 1.14.1.2) for the biosynthesis of pyridine nucleotides in anaerobically and aerobically grown Saccharomyces cerevisiae. , 1971, Hoppe-Seyler's Zeitschrift fur physiologische Chemie.

[40]  R. Elander,et al.  Metabolism of Tryptophans by Pseudomonas aureofaciens , 1968 .

[41]  F. Lingens,et al.  [On the biosynthesis of nicotinic acid in streptomycetes, algae, phycomycetes, and yeasts]. , 1964, Hoppe-Seyler's Zeitschrift fur physiologische Chemie.

[42]  L. Henderson,et al.  TRYPTOPHAN-NIACIN RELATIONSHIP IN XANTHOMONAS PRUNI , 1963, Journal of bacteriology.

[43]  T. Tanaka,et al.  The nature and mechanism of the tryptophan pyrrolase (peroxidase-oxidase) reaction of Pseudomonas and of rat liver. , 1959, The Journal of biological chemistry.