Mechanism of d-alanine transfer to teichoic acids shows how bacteria acylate cell envelope polymers

[1]  I. Ayala,et al.  DltC acts as an interaction hub for AcpS, DltA and DltB in the teichoic acid d-alanylation pathway of Lactiplantibacillus plantarum , 2022, Scientific reports.

[2]  Edward W. Tate,et al.  Structure, mechanism, and inhibition of Hedgehog acyltransferase , 2021, Molecular cell.

[3]  A. Clarke,et al.  Mechanism of Staphylococcus aureus peptidoglycan O-acetyltransferase A as an O-acyltransferase , 2021, Proceedings of the National Academy of Sciences.

[4]  S. Ovchinnikov,et al.  ColabFold: making protein folding accessible to all , 2022, Nature Methods.

[5]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[6]  S. Long,et al.  Substrate and product complexes reveal mechanisms of Hedgehog acylation by HHAT , 2021, Science.

[7]  S. Ben-Yehuda,et al.  Bacteria elicit a phage tolerance response subsequent to infection of their neighbors , 2021, bioRxiv.

[8]  A. Blanc-Potard,et al.  Uncovering small membrane proteins in pathogenic bacteria: Regulatory functions and therapeutic potential , 2020, Molecular microbiology.

[9]  Catherine C. Y. Chang,et al.  Structural insights into the inhibition mechanism of human sterol O-acyltransferase 1 by a competitive inhibitor , 2020, Nature Communications.

[10]  Xiaochun Li,et al.  Structure of nevanimibe-bound tetrameric human ACAT1 , 2020, Nature.

[11]  M. Liao,et al.  Structure and catalytic mechanism of a human triglyceride synthesis enzyme , 2020, Nature.

[12]  R. Losick,et al.  The Length of Lipoteichoic Acid Polymers Controls Staphylococcus aureus Cell Size and Envelope Integrity , 2020, Journal of Bacteriology.

[13]  H. Qian,et al.  Structure and mechanism of human diacylglycerol O-acyltransferase-1 , 2020, Nature.

[14]  Catherine A Makarewich,et al.  The hidden world of membrane microproteins. , 2020, Experimental cell research.

[15]  H. Qian,et al.  Structural basis for catalysis and substrate specificity of human ACAT1 , 2020, Nature.

[16]  B. Rehm,et al.  Analysis of the alginate O-acetylation machinery in Pseudomonas aeruginosa , 2020, Applied Microbiology and Biotechnology.

[17]  S. Walker,et al.  Staphylococcus aureus cell growth and division are regulated by an amidase that trims peptides from uncrosslinked peptidoglycan , 2019, Nature Microbiology.

[18]  Nils Oberg,et al.  The EFI Web Resource for Genomic Enzymology Web Tools: Leveraging Protein, Genome, and Metagenome Databases to Discover Novel Enzymes and Metabolic Pathways. , 2019, Biochemistry.

[19]  J. Chin,et al.  Trapping biosynthetic acyl-enzyme intermediates with encoded 2,3-diaminopropionic acid , 2018, Nature.

[20]  S. Walker,et al.  A partial reconstitution implicates DltD in catalyzing lipoteichoic acid d-alanylation , 2018, The Journal of Biological Chemistry.

[21]  Z. Rao,et al.  Crystal structure of a membrane-bound O-acyltransferase , 2018, Nature.

[22]  Robert P. Sheridan,et al.  The EVcouplings Python framework for coevolutionary sequence analysis , 2018, bioRxiv.

[23]  S. Hughes,et al.  D-alanine esterification of teichoic acids contributes to Lactobacillus plantarum mediated Drosophila growth promotion upon chronic undernutrition , 2017, Nature Microbiology.

[24]  M. Kallassy,et al.  DltX of Bacillus thuringiensis Is Essential for D-Alanylation of Teichoic Acids and Resistance to Antimicrobial Response in Insects , 2017, Front. Microbiol..

[25]  Yan Li,et al.  SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File Manipulation , 2016, PloS one.

[26]  Michael E. Taveirne,et al.  Accumulation of Peptidoglycan O-Acetylation Leads to Altered Cell Wall Biochemistry and Negatively Impacts Pathogenesis Factors of Campylobacter jejuni* , 2016, The Journal of Biological Chemistry.

[27]  Marina Santiago,et al.  A synthetic lethal approach for compound and target identification in Staphylococcus aureus , 2015, Nature chemical biology.

[28]  Arne Elofsson,et al.  The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides , 2015, Nucleic Acids Res..

[29]  A. Gründling,et al.  Lipoteichoic acid synthesis and function in gram-positive bacteria. , 2014, Annual review of microbiology.

[30]  Michael S. Gilmore,et al.  Compound-gene interaction mapping reveals distinct roles for Staphylococcus aureus teichoic acids , 2014, Proceedings of the National Academy of Sciences.

[31]  P. Howell,et al.  P. aeruginosa SGNH Hydrolase-Like Proteins AlgJ and AlgX Have Similar Topology but Separate and Distinct Roles in Alginate Acetylation , 2014, PLoS pathogens.

[32]  Y. Wolf,et al.  Small proteins can no longer be ignored. , 2014, Annual review of biochemistry.

[33]  S. Walker,et al.  Teichoic acid biosynthesis as an antibiotic target. , 2013, Current opinion in microbiology.

[34]  L. Bakaletz,et al.  d-Alanine Modification of a Protease-Susceptible Outer Membrane Component by the Bordetella pertussis dra Locus Promotes Resistance to Antimicrobial Peptides and Polymorphonuclear Leukocyte-Mediated Killing , 2013, Journal of bacteriology.

[35]  Nathalie T. Reichmann,et al.  Revised mechanism of d-alanine incorporation into cell wall polymers in Gram-positive bacteria , 2013, Microbiology.

[36]  J. Dworkin,et al.  Bacillus anthracis Acetyltransferases PatA1 and PatA2 Modify the Secondary Cell Wall Polysaccharide and Affect the Assembly of S-Layer Proteins , 2012, Journal of bacteriology.

[37]  R. Maier,et al.  Helicobacter pylori Peptidoglycan Modifications Confer Lysozyme Resistance and Contribute to Survival in the Host , 2012, mBio.

[38]  Y. Shai,et al.  D-Alanylation of Lipoteichoic Acids Confers Resistance to Cationic Peptides in Group B Streptococcus by Increasing the Cell Wall Density , 2012, PLoS pathogens.

[39]  T. Abshire,et al.  Localization and structural analysis of a conserved pyruvylated epitope in Bacillus anthracis secondary cell wall polysaccharides and characterization of the galactose-deficient wall polysaccharide from avirulent B. anthracis CDC 684. , 2012, Glycobiology.

[40]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[41]  J. Helmann,et al.  Bacillus subtilis σV Confers Lysozyme Resistance by Activation of Two Cell Wall Modification Pathways, Peptidoglycan O-Acetylation and d-Alanylation of Teichoic Acids , 2011, Journal of bacteriology.

[42]  James C. Abbott,et al.  c-di-AMP Is a New Second Messenger in Staphylococcus aureus with a Role in Controlling Cell Size and Envelope Stress , 2011, PLoS pathogens.

[43]  P. Cossart,et al.  OatA, a peptidoglycan O-acetyltransferase involved in Listeria monocytogenes immune escape, is critical for virulence. , 2011, The Journal of infectious diseases.

[44]  A. Singh,et al.  Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus. , 2011, ACS chemical biology.

[45]  T. Silhavy,et al.  The bacterial cell envelope. , 2010, Cold Spring Harbor perspectives in biology.

[46]  P. Moynihan,et al.  O-Acetylation of Peptidoglycan in Gram-negative Bacteria , 2010, The Journal of Biological Chemistry.

[47]  M. Kallassy,et al.  The dlt Operon of Bacillus cereus Is Required for Resistance to Cationic Antimicrobial Peptides and for Virulence in Insects , 2009, Journal of bacteriology.

[48]  N. Grishin,et al.  Identification of the Acyltransferase that Octanoylates Ghrelin, an Appetite-Stimulating Peptide Hormone , 2008, Cell.

[49]  A. Tomasz,et al.  Attenuation of penicillin resistance in a peptidoglycan O‐acetyl transferase mutant of Streptococcus pneumoniae , 2006, Molecular microbiology.

[50]  W. Vollmer,et al.  A Functional dlt Operon, Encoding Proteins Required for Incorporation of d-Alanine in Teichoic Acids in Gram-Positive Bacteria, Confers Resistance to Cationic Antimicrobial Peptides in Streptococcus pneumoniae , 2006, Journal of bacteriology.

[51]  O. Holst,et al.  Alanine Esters of Enterococcal Lipoteichoic Acid Play a Role in Biofilm Formation and Resistance to Antimicrobial Peptides , 2006, Infection and Immunity.

[52]  Francis C. Neuhaus,et al.  A Continuum of Anionic Charge: Structures and Functions of d-Alanyl-Teichoic Acids in Gram-Positive Bacteria , 2003, Microbiology and Molecular Biology Reviews.

[53]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[54]  M. Baptista,et al.  Attenuated virulence of Streptococcus agalactiae deficient in D‐alanyl‐lipoteichoic acid is due to an increased susceptibility to defensins and phagocytic cells , 2003, Molecular microbiology.

[55]  Song Lin,et al.  Human acyl-coenzyme A:cholesterol acyltransferase expressed in chinese hamster ovary cells: membrane topology and active site location. , 2003, Molecular biology of the cell.

[56]  M. Gelb,et al.  Role of Charge Properties of Bacterial Envelope in Bactericidal Action of Human Group IIA Phospholipase A2against Staphylococcus aureus* , 2002, The Journal of Biological Chemistry.

[57]  B. Neumeister,et al.  Staphylococcus aureus strains lacking D-alanine modifications of teichoic acids are highly susceptible to human neutrophil killing and are virulence attenuated in mice. , 2002, The Journal of infectious diseases.

[58]  M. Travisano,et al.  Adaptive divergence in experimental populations of Pseudomonas fluorescens. I. Genetic and phenotypic bases of wrinkly spreader fitness. , 2002, Genetics.

[59]  N. T. Blackburn,et al.  Characterization of soluble and membrane-bound family 3 lytic transglycosylases from Pseudomonas aeruginosa. , 2002, Biochemistry.

[60]  F. Fiedler,et al.  Formation of D‐alanyl‐lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes , 2002, Molecular microbiology.

[61]  G. Pier,et al.  Role of Alginate O Acetylation in Resistance of Mucoid Pseudomonas aeruginosa to Opsonic Phagocytosis , 2001, Infection and Immunity.

[62]  A. Peschel,et al.  The d-Alanine Residues ofStaphylococcus aureus Teichoic Acids Alter the Susceptibility to Vancomycin and the Activity of Autolytic Enzymes , 2000, Antimicrobial Agents and Chemotherapy.

[63]  K. Hofmann A superfamily of membrane-bound O-acyltransferases with implications for wnt signaling. , 2000, Trends in biochemical sciences.

[64]  H. Kalbacher,et al.  Inactivation of the dlt Operon inStaphylococcus aureus Confers Sensitivity to Defensins, Protegrins, and Other Antimicrobial Peptides* , 1999, The Journal of Biological Chemistry.

[65]  W. Fischer,et al.  The absence of D-alanine from lipoteichoic acid and wall teichoic acid alters surface charge, enhances autolysis and increases susceptibility to methicillin in Bacillus subtilis. , 1997, Microbiology.

[66]  M. Franklin,et al.  Identification of algI and algJ in the Pseudomonas aeruginosa alginate biosynthetic gene cluster which are required for alginate O acetylation , 1996, Journal of bacteriology.

[67]  A. Willis,et al.  The reaction mechanism of the internal thioester in the human complement component C4 , 1996, Nature.

[68]  M. Perego,et al.  Incorporation of D-Alanine into Lipoteichoic Acid and Wall Teichoic Acid in Bacillus subtilis , 1995, The Journal of Biological Chemistry.

[69]  M P Heaton,et al.  Role of the D-alanyl carrier protein in the biosynthesis of D-alanyl-lipoteichoic acid , 1994, Journal of bacteriology.

[70]  W. Fischer,et al.  Maintenance of D-alanine ester substitution of lipoteichoic acid by reesterification in Staphylococcus aureus , 1985, Journal of bacteriology.

[71]  W. Fischer,et al.  Effect of alanine ester substitution and other structural features of lipoteichoic acids on their inhibitory activity against autolysins of Staphylococcus aureus , 1981, Journal of bacteriology.

[72]  J. Baddiley,et al.  Biosynthesis of the unit that links teichoic acid to the bacterial wall: Inhibition by tunicamycin , 1976, FEBS letters.

[73]  F. Neuhaus,et al.  The enzymic activation of D-alanine. , 1960, The Biochemical journal.

[74]  P. Howell,et al.  PatB1 is an O-acetyltransferase that decorates secondary cell wall polysaccharides. , 2018, Nature chemical biology.

[75]  Sean R. Eddy,et al.  Profile hidden Markov models , 1998, Bioinform..

[76]  W. Fischer,et al.  Alanyl turnover from lipoteichoic acid to teichoic acid in Staphylococcus aureus , 1984 .