Fixed-point iteration Gaussian sum filtering estimator with unknown time-varying non-Gaussian measurement noise

Abstract This paper addresses the state estimation problem in the presence of unknown time-varying non-Gaussian measurement noise (NGMN) modeled by Gaussian mixture distribution(GMD). Recently, the variational Bayesian (VB)-based estimators have been successfully used in the state estimation problem in the presence of unknown measurement noise. However, we reveal that when the state-space model is non-Gaussian, exploiting the traditional VB method, the joint posterior probability density function of the state and parameters of non-Gaussian measurement noise has no analytical result. To fill this gap, a fixed-point iteration Gaussian sum filtering (FPI-GSF) estimator is proposed to jointly estimate the state and the unknown time-varying NGMN online. The proposed estimator utilizes a fixed-point iteration scheme to iteratively calculate the state posterior distribution through the GSF and noise parameters posterior distribution via the VB method, thus it avoids calculating the joint posterior distribution. Simulation results demonstrate the effectiveness of the proposed estimator.

[1]  Yonggang Zhang,et al.  A Novel Adaptive Kalman Filter With Inaccurate Process and Measurement Noise Covariance Matrices , 2018, IEEE Transactions on Automatic Control.

[2]  Aubrey B. Poore,et al.  Gaussian Sum Filters for Space Surveillance: Theory and Simulations , 2011 .

[3]  X. R. Li,et al.  Survey of maneuvering target tracking. Part I. Dynamic models , 2003 .

[4]  David M. Blei,et al.  Variational Inference: A Review for Statisticians , 2016, ArXiv.

[5]  W. Wu,et al.  Target racking with glint noise , 1993 .

[6]  Nuno Vasconcelos,et al.  On the efficient evaluation of probabilistic similarity functions for image retrieval , 2004, IEEE Transactions on Information Theory.

[7]  G. Parisi,et al.  Statistical Field Theory , 1988 .

[8]  Henry Leung,et al.  Variational Bayesian Adaptive Cubature Information Filter Based on Wishart Distribution , 2017, IEEE Transactions on Automatic Control.

[9]  José Carlos Príncipe,et al.  Closed-form cauchy-schwarz PDF divergence for mixture of Gaussians , 2011, The 2011 International Joint Conference on Neural Networks.

[10]  Eduardo Mario Nebot,et al.  Approximate Inference in State-Space Models With Heavy-Tailed Noise , 2012, IEEE Transactions on Signal Processing.

[11]  Jitendra K. Tugnait,et al.  Adaptive estimation in linear systems with unknown Markovian noise statistics , 1980, IEEE Trans. Inf. Theory.

[12]  Michael A. West,et al.  Dynamic matrix-variate graphical models , 2007 .

[13]  Thushara D. Abhayapala,et al.  A Gaussian-Sum Based Cubature Kalman Filter for Bearings-Only Tracking , 2013, IEEE Transactions on Aerospace and Electronic Systems.

[14]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[15]  D.G. Tzikas,et al.  The variational approximation for Bayesian inference , 2008, IEEE Signal Processing Magazine.

[16]  Konstantinos N. Plataniotis,et al.  Adaptive Kalman Filtering by Covariance Sampling , 2017, IEEE Signal Processing Letters.

[17]  S. Andrew Gadsden,et al.  Gaussian filters for parameter and state estimation: A general review of theory and recent trends , 2017, Signal Process..

[18]  G. Hewer,et al.  Robust Preprocessing for Kalman Filtering of Glint Noise , 1987, IEEE Transactions on Aerospace and Electronic Systems.

[19]  Qian Zhang,et al.  Gaussian mixture presentation of measurements for long-range radar tracking , 2016, Digit. Signal Process..

[20]  H. Sorenson,et al.  Nonlinear Bayesian estimation using Gaussian sum approximations , 1972 .

[21]  Zhi-Yong Miao,et al.  Analysis of a variational Bayesian adaptive cubature Kalman filter tracking loop for high dynamic conditions , 2016, GPS Solutions.

[22]  J. Tabrikian,et al.  MMSE-Based Filtering in Presence of Non-Gaussian System and Measurement Noise , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[23]  Shukai Duan,et al.  A Modified Variational Bayesian Noise Adaptive Kalman Filter , 2017, Circuits Syst. Signal Process..

[24]  Krishna R. Pattipati,et al.  A look at Gaussian mixture reduction algorithms , 2011, 14th International Conference on Information Fusion.

[25]  Simo Särkkä,et al.  Recursive Noise Adaptive Kalman Filtering by Variational Bayesian Approximations , 2009, IEEE Transactions on Automatic Control.

[26]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[27]  I. Bilik,et al.  Maneuvering Target Tracking in the Presence of Glint using the Nonlinear Gaussian Mixture Kalman Filter , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[28]  Dimitrios Hatzinakos,et al.  An adaptive Gaussian sum algorithm for radar tracking , 1999, Signal Process..

[29]  K. Fu,et al.  On state estimation in switching environments , 1968 .