KeystoneML: Optimizing Pipelines for Large-Scale Advanced Analytics
暂无分享,去创建一个
Benjamin Recht | Michael J. Franklin | Evan R. Sparks | Shivaram Venkataraman | Tomer Kaftan | B. Recht | M. Franklin | S. Venkataraman | Tomer Kaftan
[1] Laszlo A. Belady,et al. A Study of Replacement Algorithms for Virtual-Storage Computer , 1966, IBM Syst. J..
[2] Patricia G. Selinger,et al. Access path selection in a relational database management system , 1979, SIGMOD '79.
[3] Prabhakar Raghavan,et al. Memory Versus Randomization in On-line Algorithms (Extended Abstract) , 1989, ICALP.
[4] John N. Tsitsiklis,et al. Parallel and distributed computation , 1989 .
[5] Prabhakar Raghavan,et al. Memory versus randomization in on-line algorithms , 1994, IBM J. Res. Dev..
[6] Jeffrey F. Naughton,et al. Query execution techniques for caching expensive methods , 1996, SIGMOD '96.
[7] Jeffrey D. Ullman,et al. Implementing data cubes efficiently , 1996, SIGMOD '96.
[8] Surajit Chaudhuri,et al. AutoAdmin “what-if” index analysis utility , 1998, SIGMOD '98.
[9] Eddie Kohler,et al. The Click modular router , 1999, SOSP.
[10] David G. Lowe,et al. Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.
[11] Dan Klein,et al. Optimization, Maxent Models, and Conditional Estimation without Magic , 2003, NAACL.
[12] Hamid Pirahesh,et al. Recommending materialized views and indexes with the IBM DB2 design advisor , 2004 .
[13] Hamid Pirahesh,et al. Recommending materialized views and indexes with the IBM DB2 design advisor , 2004, International Conference on Autonomic Computing, 2004. Proceedings..
[14] Vikram S. Adve,et al. LLVM: a compilation framework for lifelong program analysis & transformation , 2004, International Symposium on Code Generation and Optimization, 2004. CGO 2004..
[15] R. Steele,et al. Optimization , 2005, Encyclopedia of Biometrics.
[16] Benjamin Recht,et al. Random Features for Large-Scale Kernel Machines , 2007, NIPS.
[17] Thorsten Meinl,et al. KNIME: The Konstanz Information Miner , 2007, GfKl.
[18] Chih-Jen Lin,et al. A Practical Guide to Support Vector Classication , 2008 .
[19] Samuel Williams,et al. Roofline: an insightful visual performance model for multicore architectures , 2009, CACM.
[20] Michael Stonebraker,et al. Requirements for Science Data Bases and SciDB , 2009, CIDR.
[21] RIOT: I/O-Efficient Numerical Computing without SQL , 2009, CIDR.
[22] Alex Zelinsky,et al. Learning OpenCV---Computer Vision with the OpenCV Library (Bradski, G.R. et al.; 2008)[On the Shelf] , 2009, IEEE Robotics & Automation Magazine.
[23] Rada Chirkova,et al. Materialized Views , 2012, Found. Trends Databases.
[24] Peter Norvig,et al. The Unreasonable Effectiveness of Data , 2009, IEEE Intelligent Systems.
[25] A. Krizhevsky. Convolutional Deep Belief Networks on CIFAR-10 , 2010 .
[26] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[27] Stephen J. Wright,et al. Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent , 2011, NIPS.
[28] Daniel Povey,et al. The Kaldi Speech Recognition Toolkit , 2011 .
[29] Andrew Zisserman,et al. The devil is in the details: an evaluation of recent feature encoding methods , 2011, BMVC.
[30] Shirish Tatikonda,et al. SystemML: Declarative machine learning on MapReduce , 2011, 2011 IEEE 27th International Conference on Data Engineering.
[31] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[32] Andrew Y. Ng,et al. Learning Feature Representations with K-Means , 2012, Neural Networks: Tricks of the Trade.
[33] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[34] Ashraf Aboulnaga,et al. ReStore: reusing results of MapReduce jobs in pig , 2012, SIGMOD Conference.
[35] James Demmel,et al. Communication-optimal Parallel and Sequential QR and LU Factorizations , 2008, SIAM J. Sci. Comput..
[36] Joseph M. Hellerstein,et al. Distributed GraphLab: A Framework for Machine Learning in the Cloud , 2012, Proc. VLDB Endow..
[37] Kun Li,et al. The MADlib Analytics Library or MAD Skills, the SQL , 2012, Proc. VLDB Endow..
[38] Carlos Guestrin,et al. Distributed GraphLab : A Framework for Machine Learning and Data Mining in the Cloud , 2012 .
[39] Ashraf Aboulnaga,et al. ReStore: Reusing Results of MapReduce Jobs , 2012, Proc. VLDB Endow..
[40] Christopher Ré,et al. Towards a unified architecture for in-RDBMS analytics , 2012, SIGMOD Conference.
[41] Tim Kraska,et al. MLbase: A Distributed Machine-learning System , 2013, CIDR.
[42] Grey Ballard,et al. Avoiding Communication in Dense Linear Algebra , 2013 .
[43] Florin Rusu,et al. Scalable I/O-bound parallel incremental gradient descent for big data analytics in GLADE , 2013, DanaC '13.
[44] Thomas Mensink,et al. Image Classification with the Fisher Vector: Theory and Practice , 2013, International Journal of Computer Vision.
[45] Christopher Ré,et al. DimmWitted: A Study of Main-Memory Statistical Analytics , 2014, Proc. VLDB Endow..
[46] Alexander J. Smola,et al. Scaling Distributed Machine Learning with the Parameter Server , 2014, OSDI.
[47] Tim Kraska,et al. Tupleware: Distributed Machine Learning on Small Clusters , 2014, IEEE Data Eng. Bull..
[48] John Langford,et al. A reliable effective terascale linear learning system , 2011, J. Mach. Learn. Res..
[49] Mihai Surdeanu,et al. The Stanford CoreNLP Natural Language Processing Toolkit , 2014, ACL.
[50] Luis Leopoldo Perez,et al. History-aware query optimization with materialized intermediate views , 2014, 2014 IEEE 30th International Conference on Data Engineering.
[51] W. B. Roberts,et al. Machine Learning: The High Interest Credit Card of Technical Debt , 2014 .
[52] Luis Leopoldo Perez,et al. A comparison of platforms for implementing and running very large scale machine learning algorithms , 2014, SIGMOD Conference.
[53] Yann LeCun,et al. Fast Training of Convolutional Networks through FFTs , 2013, ICLR.
[54] Tara N. Sainath,et al. Kernel methods match Deep Neural Networks on TIMIT , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[55] Weizhu Chen,et al. Large-scale L-BFGS using MapReduce , 2014, NIPS.
[56] Christopher R'e,et al. Caffe con Troll: Shallow Ideas to Speed Up Deep Learning , 2015, DanaC@SIGMOD.
[57] Jure Leskovec,et al. Inferring Networks of Substitutable and Complementary Products , 2015, KDD.
[58] Tim Kraska,et al. Automating model search for large scale machine learning , 2015, SoCC.
[59] C. Ré,et al. Materialization optimizations for feature selection workloads , 2014, SIGMOD Conference.
[60] Sergey Ioffe,et al. Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[61] Samy Bengio,et al. Revisiting Distributed Synchronous SGD , 2016, ArXiv.
[62] Ameet Talwalkar,et al. MLlib: Machine Learning in Apache Spark , 2015, J. Mach. Learn. Res..
[63] Haim Avron,et al. High-Performance Kernel Machines With Implicit Distributed Optimization and Randomization , 2014, Technometrics.
[64] Apostol Natsev,et al. YouTube-8M: A Large-Scale Video Classification Benchmark , 2016, ArXiv.
[65] Benjamin Recht,et al. Flare Prediction Using Photospheric and Coronal Image Data , 2016, ArXiv.
[66] R. Sarpong,et al. Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.