Three-dimensional geometric morphometrics of thorax-pelvis covariation and its potential for predicting the thorax morphology: A case study on Kebara 2 Neandertal.

The skeletal torso is a complex structure of outstanding importance in understanding human body shape evolution, but reconstruction usually entails an element of subjectivity as researchers apply their own anatomical expertise to the process. Among different fossil reconstruction methods, 3D geometric morphometric techniques have been increasingly used in the last decades. Two-block partial least squares analysis has shown great potential for predicting missing elements by exploiting the covariation between two structures (blocks) in a reference sample: one block can be predicted from the other one based on the strength of covariation between blocks. The first aim of this study is to test whether this predictive approach can be used for predicting thorax morphologies from pelvis morphologies within adult Homo sapiens reference samples with known covariation between the thorax and the pelvis. The second aim is to apply this method to Kebara 2 Neandertal (Israel, ∼60 ka) to predict its thorax morphology using two different pelvis reconstructions as predictors. We measured 134 true landmarks, 720 curve semilandmarks, and 160 surface semilandmarks on 60 3D virtual torso models segmented from CT scans. We conducted three two-block partial least squares analyses between the thorax (block 1) and the pelvis (block 2) based on the H. sapiens reference samples after performing generalized Procrustes superimposition on each block separately. Comparisons of these predictions in full shape space by means of Procrustes distances show that the male-only predictive model yields the most reliable predictions within modern humans. In addition, Kebara 2 thorax predictions based on this model concur with the thorax morphology proposed for Neandertals. The method presented here does not aim to replace other techniques, but to rather complement them through quantitative prediction of a virtual 'scaffold' to articulate the thoracic fossil elements, thus extending the potential of missing data estimation beyond the methods proposed in previous works.

[1]  A. Rosas,et al.  Ribcage measurements indicate greater lung capacity in Neanderthals and Lower Pleistocene hominins compared to modern humans , 2018, Communications Biology.

[2]  W. Sellers,et al.  A volumetric technique for fossil body mass estimation applied to Australopithecus afarensis. , 2017, Journal of human evolution.

[3]  J. T. Stern Climbing to the top: A personal memoir of Australopithecus afarensis , 2000 .

[4]  C. Lovejoy,et al.  AL 288-1--Lucy or Lucifer: gender confusion in the Pliocene. , 1998, Journal of human evolution.

[5]  F J Rohlf,et al.  Use of two-block partial least-squares to study covariation in shape. , 2000, Systematic biology.

[6]  J. Gower Generalized procrustes analysis , 1975 .

[7]  P. Schmid,et al.  Comparison of the pelves of Sts 14 and AL288-1: implications for birth and sexual dimorphism in australopithecines , 1995 .

[8]  D. Adams,et al.  On the comparison of the strength of morphological integration across morphometric datasets , 2016, Evolution; international journal of organic evolution.

[9]  M. Haeusler,et al.  Morphology, pathology, and the vertebral posture of the La Chapelle-aux-Saints Neandertal , 2019, Proceedings of the National Academy of Sciences.

[10]  H. Breuil,et al.  The Stone Age of Mount Carmel: , 1938, Nature.

[11]  J. Maisano,et al.  Perimortem fractures in Lucy suggest mortality from fall out of tall tree , 2016, Nature.

[12]  F. Bookstein,et al.  Semilandmarks in Three Dimensions , 2005 .

[13]  J. DeSilva,et al.  Reconstructing birth in Australopithecus sediba , 2019, PloS one.

[14]  Stefan Schlager,et al.  Morpho and Rvcg – Shape Analysis in R: R-Packages for Geometric Morphometrics, Shape Analysis and Surface Manipulations , 2017 .

[15]  S. Wold,et al.  PLS-regression: a basic tool of chemometrics , 2001 .

[16]  J. DeSilva,et al.  Virtual reconstruction of the Australopithecus africanus pelvis Sts 65 with implications for obstetrics and locomotion. , 2016, Journal of human evolution.

[17]  Sam C. Lin,et al.  A geometric morphometric relationship predicts stone flake shape and size variability , 2018, Archaeological and Anthropological Sciences.

[18]  A. Froehle,et al.  Energetic Competition Between Neandertals and Anatomically Modern Humans , 2009 .

[19]  A. Rosas,et al.  The costal remains of the El Sidrón Neanderthal site (Asturias, northern Spain) and their importance for understanding Neanderthal thorax morphology. , 2017, Journal of human evolution.

[20]  C. Ruff,et al.  Body mass and encephalization in Pleistocene Homo , 1997, Nature.

[21]  F. Bookstein,et al.  Cranial integration in Homo: singular warps analysis of the midsagittal plane in ontogeny and evolution. , 2003, Journal of human evolution.

[22]  H. David Sheets,et al.  The Morphological Integration of the Hominoid Skull: A Partial Least Squares and PC Analysis with Implications for European Middle Pleistocene Mandibular Variation , 2005 .

[23]  H. David Sheets,et al.  Geometric morphometrics for biologists : a primer , 2004 .

[24]  Sileshi Semaw,et al.  A Female Homo erectus Pelvis from Gona, Ethiopia , 2008, Science.

[25]  M. de la Rasilla,et al.  The relevance of the first ribs of the El Sidrón site (Asturias, Spain) for the understanding of the Neandertal thorax. , 2015, Journal of human evolution.

[26]  S. Peleg,et al.  Morphology and function of the lumbar spine of the Kebara 2 Neandertal. , 2010, American journal of physical anthropology.

[27]  J. T. Stern,et al.  The locomotor anatomy of Australopithecus afarensis. , 1983, American journal of physical anthropology.

[28]  P. Gunz,et al.  Covariation of the endocranium and splanchnocranium during great ape ontogeny , 2018, PloS one.

[29]  A. Gómez‐Olivencia,et al.  The costal skeleton of the Regourdou 1 Neandertal. , 2019, Journal of human evolution.

[30]  A. Rosas,et al.  Over 100 years of Krapina: New insights into the Neanderthal thorax from the study of rib cross-sectional morphology. , 2018, Journal of human evolution.

[31]  P. Gunz,et al.  Semilandmarks: a method for quantifying curves and surfaces , 2013 .

[32]  Jesús Marugán-Lobón,et al.  Evolutionary covariation in geometric morphometric data: analyzing integration, modularity, and allometry in a phylogenetic context. , 2013, Systematic biology.

[33]  A. Rosas,et al.  Correlated variation between the lateral basicranium and the face: a geometric morphometric study in different human groups. , 2006, Archives of oral biology.

[34]  M. Bastir,et al.  Reevaluation of 'endocostal ossifications' on the Kebara 2 Neanderthal ribs. , 2018, Journal of human evolution.

[35]  F. Spoor,et al.  Using the covariation of extant hominoid upper and lower jaws to predict dental arcades of extinct hominins. , 2018, Journal of human evolution.

[36]  Jia Liu,et al.  Combining geometric morphometrics and functional simulation: an emerging toolkit for virtual functional analyses , 2011, Journal of anatomy.

[37]  Ana Sofia Pereira-Pedro,et al.  Patterns of morphological integration between parietal and temporal areas in the human skull , 2017, Journal of morphology.

[38]  Victor Sholukha,et al.  In vivo thorax 3D modelling from costovertebral joint complex kinematics. , 2014, Clinical biomechanics.

[39]  C. Ruff,et al.  The Reconstruction of the Pelvis , 1993 .

[40]  G. Manzi,et al.  The evolution of cranial base and face in Cercopithecoidea and Hominoidea: Modularity and morphological integration , 2017, American journal of primatology.

[41]  P. O’Higgins The study of morphological variation in the hominid fossil record: biology, landmarks and geometry , 2000, Journal of anatomy.

[42]  Stefan Schlager Soft-tissue reconstruction of the human nose : population differences and sexual dimorphism , 2013 .

[43]  C. Ward Interpreting the posture and locomotion of Australopithecus afarensis: where do we stand? , 2002, American journal of physical anthropology.

[44]  F. Spoor,et al.  Hominoid arcade shape: Pattern and magnitude of covariation. , 2017, Journal of human evolution.

[45]  V. Feipel,et al.  How different are the Kebara 2 ribs to modern humans? , 2017, Journal of anthropological sciences = Rivista di antropologia : JASS.

[46]  C. Ruff Body size and body shape in early hominins - implications of the Gona pelvis. , 2010, Journal of human evolution.

[47]  M. de la Rasilla,et al.  Three-dimensional morphometrics of thoracic vertebrae in Neandertals and the fossil evidence from El Sidrón (Asturias, Northern Spain). , 2017, Journal of human evolution.

[48]  S. Schlager,et al.  Retrodeformation of fossil specimens based on 3D bilateral semi-landmarks: Implementation in the R package “Morpho” , 2018, PloS one.

[49]  J. Arias-Martorell,et al.  Like Father, Like Son: Assessment of the Morphological Affinities of A.L. 288–1 (A. afarensis), Sts 7 (A. africanus) and Omo 119–73–2718 (Australopithecus sp.) through a Three-Dimensional Shape Analysis of the Shoulder Joint , 2015, PloS one.

[50]  F. Bookstein,et al.  Computer-aided reconstruction of incomplete human crania using statistical and geometrical estimation methods , 2004 .

[51]  P. Gunz,et al.  Advances in Geometric Morphometrics , 2009, Evolutionary Biology.

[52]  S. Churchill Thin on the Ground: Neandertal Biology, Archeology, and Ecology , 2014 .

[53]  G. Graeber,et al.  The anatomy of the ribs and the sternum and their relationship to chest wall structure and function. , 2007, Thoracic surgery clinics.

[54]  Y. Rak,et al.  Kebara 2 Neanderthal pelvis: first look at a complete inlet. , 1987, American Journal of Physical Anthropology.

[55]  B. Latimer,et al.  The Rib Cage , 1993 .

[56]  Scott A. Williams,et al.  The torso integration hypothesis revisited in Homo sapiens: Contributions to the understanding of hominin body shape evolution. , 2018, American journal of physical anthropology.

[57]  K. Rosenberg Neandertal Pelvic Remains from Krapina: Peculiar or Primitive? , 2007 .

[58]  P. Kramer,et al.  3D Reconstruction of Spinal Posture of the Kebara 2 Neanderthal , 2017 .

[59]  F. Bookstein,et al.  Virtual Anthropology: A guide to a new interdisciplinary field , 2011 .

[60]  H. Abdi Partial Least Squares (PLS) Regression. , 2003 .

[61]  E. Carbonell,et al.  Middle Pleistocene lower back and pelvis from an aged human individual from the Sima de los Huesos site, Spain , 2010, Proceedings of the National Academy of Sciences.

[62]  S. Wroe,et al.  Basicranium and face: Assessing the impact of morphological integration on primate evolution. , 2018, Journal of human evolution.

[63]  A. Gómez‐Olivencia,et al.  Morphological integration in the gorilla, chimpanzee, and human neck. , 2018, American journal of physical anthropology.

[64]  Gerhard W Weber,et al.  Principles for the virtual reconstruction of hominin crania. , 2009, Journal of human evolution.

[65]  P. Kramer,et al.  3D virtual reconstruction of the Kebara 2 Neandertal thorax , 2018, Nature Communications.

[66]  G. Müller,et al.  How to Explore Morphological Integration in Human Evolution and Development? , 2012, Evolutionary Biology.

[67]  F. Bookstein,et al.  The conceptual and statistical relationship between modularity and morphological integration. , 2007, Systematic biology.

[68]  Nicole Torres-Tamayo,et al.  Workflows in a Virtual Morphology Lab: 3D scanning, measuring, and printing. , 2019, Journal of anthropological sciences = Rivista di antropologia : JASS.

[69]  K. Carlson,et al.  Mosaic Morphology in the Thorax of Australopithecus sediba , 2013, Science.

[70]  Paolo Cignoni,et al.  MeshLab: an Open-Source Mesh Processing Tool , 2008, Eurographics Italian Chapter Conference.

[71]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[72]  J. Arsuaga,et al.  Kebara 2: new insights regarding the most complete Neandertal thorax. , 2009, Journal of human evolution.

[73]  E. Carbonell,et al.  Postcranial morphology of the middle Pleistocene humans from Sima de los Huesos, Spain , 2015, Proceedings of the National Academy of Sciences.

[74]  M. Bastir,et al.  On the chest size of Kebara 2. , 2014, Journal of human evolution.

[75]  J. Arsuaga,et al.  The Neandertal vertebral column 1: the cervical spine. , 2013, Journal of human evolution.

[76]  N. Ogihara,et al.  Assessing thoraco-pelvic covariation in Homo sapiens and Pan troglodytes: A 3D geometric morphometric approach. , 2020, American journal of physical anthropology.

[77]  Christoph P. E. Zollikofer,et al.  Virtual Reconstruction: A Primer in Computer-Assisted Paleontology and Biomedicine , 2005 .

[78]  Kevin G. Hatala,et al.  The evolution of body size and shape in the human career , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[79]  K. Krleza-Jeric,et al.  The Declaration of Helsinki , 2007, BMJ : British Medical Journal.

[80]  J. Stock,et al.  The Neandertal vertebral column 2: The lumbar spine. , 2017, Journal of human evolution.

[81]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[82]  S. Schlager,et al.  Geometric Morphometric Studies in the Human Spine , 2019, Spinal Evolution.

[83]  P. Schmid Eine Rekonstruktion des Skelettes von A.L. 288-1 (Hadar) und deren Konsequenzen , 1983 .

[84]  C. Ruff Climate and body shape in hominid evolution , 1991 .

[85]  Kirby G. Vosburgh,et al.  3D Slicer: A Platform for Subject-Specific Image Analysis, Visualization, and Clinical Support , 2014 .

[86]  S. Churchill Bioenergetic perspectives on Neanderthal thermoregulatory and activity budgets , 2006 .

[87]  J. Hublin,et al.  Neandertal birth canal shape and the evolution of human childbirth , 2009, Proceedings of the National Academy of Sciences.

[88]  Martin Evison,et al.  Shape variation in anthropometric landmarks in 3D , 2010 .

[89]  S. Churchill,et al.  The costal skeleton of Shanidar 3 and a reappraisal of Neandertal thoracic morphology. , 2002, Journal of human evolution.

[90]  Scott A. Williams,et al.  Rib cage anatomy in Homo erectus suggests a recent evolutionary origin of modern human body shape , 2020, Nature Ecology & Evolution.

[91]  V. Doronichev,et al.  Neanderthal brain size at birth provides insights into the evolution of human life history , 2008, Proceedings of the National Academy of Sciences.

[92]  A new reconstruction of Sts 14 pelvis (Australopithecus africanus) from computed tomography and three-dimensional modeling techniques. , 2010, Journal of human evolution.

[93]  E. Carbonell,et al.  A complete human pelvis from the Middle Pleistocene of Spain , 1999, Nature.

[94]  C. Lovejoy,et al.  The Thoracic Cage of KSD-VP-1/1 , 2016 .

[95]  T. Holliday Body Size, Body Shape, and the Circumscription of the Genus Homo , 2012, Current Anthropology.

[96]  S. Benazzi,et al.  Geometric morphometric methods for three-dimensional virtual reconstruction of a fragmented cranium: the case of Angelo Poliziano , 2009, International Journal of Legal Medicine.