暂无分享,去创建一个
Lei Li | Yi Wu | Rastislav Bodík | Stuart J. Russell | Yi Wu | R. Bodík | Lei Li
[1] Mark N. Wegman,et al. An efficient method of computing static single assignment form , 1989, POPL '89.
[2] Joseph Robert Horgan,et al. Dynamic program slicing , 1990, PLDI '90.
[3] Proceedings of the IEEE , 2018, IEEE Journal of Emerging and Selected Topics in Power Electronics.
[4] Yoshua Bengio,et al. Gradient-based learning applied to document recognition , 1998, Proc. IEEE.
[5] Michael E. Tipping,et al. Probabilistic Principal Component Analysis , 1999 .
[6] Andrew Thomas,et al. WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility , 2000, Stat. Comput..
[7] Avi Pfeffer,et al. IBAL: A Probabilistic Rational Programming Language , 2001, IJCAI.
[8] Martyn Plummer,et al. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling , 2003 .
[9] Volume 25 , 2005 .
[10] Stuart J. Russell,et al. Approximate Inference for Infinite Contingent Bayesian Networks , 2005, AISTATS.
[11] Stuart J. Russell,et al. BLOG: Probabilistic Models with Unknown Objects , 2005, IJCAI.
[12] Stuart J. Russell,et al. General-Purpose MCMC Inference over Relational Structures , 2006, UAI.
[13] Tom Minka,et al. TrueSkillTM: A Bayesian Skill Rating System , 2006, NIPS.
[14] Joshua B. Tenenbaum,et al. Church: a language for generative models , 2008, UAI.
[15] David A. McAllester,et al. Random-World Semantics and Syntactic Independence for Expressive Languages , 2008 .
[16] A. Pfeffer,et al. Figaro : An Object-Oriented Probabilistic Programming Language , 2009 .
[17] Conrad Sanderson,et al. Armadillo: An Open Source C++ Linear Algebra Library for Fast Prototyping and Computationally Intensive Experiments , 2010 .
[18] Stuart J. Russell,et al. Gibbs Sampling in Open-Universe Stochastic Languages , 2010, UAI.
[19] Noah D. Goodman,et al. Lightweight Implementations of Probabilistic Programming Languages Via Transformational Compilation , 2011, AISTATS.
[20] W. Marsden. I and J , 2012 .
[21] Lei Li,et al. Dynamic Scaled Sampling for Deterministic Constraints , 2013, AISTATS.
[22] Joshua B. Tenenbaum,et al. Approximate Bayesian Image Interpretation using Generative Probabilistic Graphics Programs , 2013, NIPS.
[23] Sriram K. Rajamani,et al. Efficiently Sampling Probabilistic Programs via Program Analysis , 2013, AISTATS.
[24] Chung-Kil Hur,et al. Slicing probabilistic programs , 2014, PLDI.
[25] Frank D. Wood,et al. A New Approach to Probabilistic Programming Inference , 2014, AISTATS.
[26] Stuart J. Russell,et al. BFiT: From Possible-World Semantics to Random-Evaluation Semantics in an Open Universe , 2014 .
[27] Pat Hanrahan,et al. Generating Efficient MCMC Kernels from Probabilistic Programs , 2014, AISTATS.
[28] Chung-Kil Hur,et al. R2: An Efficient MCMC Sampler for Probabilistic Programs , 2014, AAAI.
[29] Michael F. P. O'Boyle,et al. Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation , 2014, PLDI 2014.
[30] Joseph Tassarotti,et al. Augur: Data-Parallel Probabilistic Modeling , 2014, NIPS.
[31] Andrew Gelman,et al. The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..
[32] Andrew Gelman,et al. Automatic Variational Inference in Stan , 2015, NIPS.
[33] Noah D. Goodman,et al. C3: Lightweight Incrementalized MCMC for Probabilistic Programs using Continuations and Callsite Caching , 2015, AISTATS.
[34] Seyed Mehran Kazemi,et al. Knowledge Compilation for Lifted Probabilistic Inference: Compiling to a Low-Level Language , 2016, KR.
[35] Emina Torlak,et al. SIMPL: A DSL for Automatic Specialization of Inference Algorithms , 2016, ArXiv.