Improved Calibration of High-Dimensional

Estimation of a precision matrix (i.e., the inverse covariance matrix) is a fundamental problem in statistical signal processing applications. When the observation dimension is of the same order of magnitude as the number of samples, the conven- tional estimators of covariance matrix and its inverse perform poorly. In order to obtain well-behaved estimators in high-di- mensional settings, we consider a general class of estimators of covariance matrices and precision matrices based on weighted sampling and linear shrinkage. The estimation error is measured in terms of both quadratic loss and Stein's loss, and these loss functions are used to calibrate the set of parameters defining our proposed estimator. In an asymptotic setting where the obser- vation dimension is comparable in magnitude to the number of samples, we provide estimators of the precision matrix that are as good as their oracle counterparts. We test our estimators with both synthetic data and financial market data, and Monte Carlo simulations show the advantage of our precision matrix estimator compared with well known estimators infinite sample size settings.

[1]  Xavier Mestre,et al.  Improved Estimation of Eigenvalues and Eigenvectors of Covariance Matrices Using Their Sample Estimates , 2008, IEEE Transactions on Information Theory.

[2]  T. W. Anderson An Introduction to Multivariate Statistical Analysis , 1959 .

[3]  C. Stein,et al.  Estimation with Quadratic Loss , 1992 .

[4]  Jianqing Fan,et al.  Sparsistency and Rates of Convergence in Large Covariance Matrix Estimation. , 2007, Annals of statistics.

[5]  F. Rubio,et al.  Spectral convergence for a general class of random matrices , 2011 .

[6]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[7]  Harrison H. Zhou,et al.  Optimal rates of convergence for covariance matrix estimation , 2010, 1010.3866.

[8]  Noureddine El Karoui,et al.  High-dimensionality effects in the Markowitz problem and other quadratic programs with linear constraints: Risk underestimation , 2010, 1211.2917.

[9]  T. W. Anderson,et al.  An Introduction to Multivariate Statistical Analysis , 1959 .

[10]  Adam J. Rothman,et al.  Sparse permutation invariant covariance estimation , 2008, 0801.4837.

[11]  Olvi L. Mangasarian,et al.  Machine Learning via Polyhedral Concave Minimization , 1996 .

[12]  Adam J. Rothman,et al.  Sparse estimation of large covariance matrices via a nested Lasso penalty , 2008, 0803.3872.

[13]  Alfred O. Hero,et al.  Shrinkage Algorithms for MMSE Covariance Estimation , 2009, IEEE Transactions on Signal Processing.

[14]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[15]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[17]  D. Dey,et al.  Estimation of a covariance matrix under Stein's loss , 1985 .

[18]  Jian Li,et al.  On Using a priori Knowledge in Space-Time Adaptive Processing , 2008, IEEE Transactions on Signal Processing.

[19]  W. Hachem,et al.  Deterministic equivalents for certain functionals of large random matrices , 2005, math/0507172.

[20]  Philippe Loubaton,et al.  A New Approach for Mutual Information Analysis of Large Dimensional Multi-Antenna Channels , 2008, IEEE Transactions on Information Theory.

[21]  L. R. Haff ESTIMATION OF THE INVERSE COVARIANCE MATRIX: RANDOM MIXTURES OF THE INVERSE WISHART MATRIX AND THE IDENTITY , 1979 .

[22]  Bin Yu,et al.  High-dimensional covariance estimation by minimizing ℓ1-penalized log-determinant divergence , 2008, 0811.3628.

[23]  Sergio Verdú,et al.  Spectral efficiency in the wideband regime , 2002, IEEE Trans. Inf. Theory.

[24]  N. Meinshausen,et al.  High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.

[25]  Daniel Pérez Palomar,et al.  Performance Analysis and Optimal Selection of Large Minimum Variance Portfolios Under Estimation Risk , 2011, IEEE Journal of Selected Topics in Signal Processing.

[26]  Stephen P. Boyd,et al.  Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices , 2003, Proceedings of the 2003 American Control Conference, 2003..

[27]  Javier F. Pena,et al.  Optimization Methods in Finance: Stochastic programming: theory and algorithms , 2006 .

[28]  Philip Wolfe,et al.  An algorithm for quadratic programming , 1956 .

[29]  P. Bickel,et al.  Regularized estimation of large covariance matrices , 2008, 0803.1909.

[30]  L. R. Haff Empirical Bayes Estimation of the Multivariate Normal Covariance Matrix , 1980 .

[31]  Jianqing Fan,et al.  High dimensional covariance matrix estimation using a factor model , 2007, math/0701124.