Basic ideas and applications of the method of reduction of dimensionality in contact mechanics

The method of reduction of dimensionality in contact mechanics is based on a mapping of some classes of three-dimensional contact problems onto one-dimensional contacts with elastic foundations. Recently, a rigorous mathematical proof of the method has been provided for contacts of arbitrary bodies of revolution with and without adhesion. The method of reduction of dimensionality has been further verified for randomly rough surfaces. The present paper gives an overview of the physical foundations of the method and of its applications to elastic and viscoelastic contacts with adhesion and friction. Both normal and tangential contact problems are discussed.

[1]  J. Greenwood,et al.  Contact of nominally flat surfaces , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  L. Landau,et al.  Lehrbuch der theoretischen Physik , 2007 .

[3]  K. A. Grosch,et al.  The relation between the friction and visco-elastic properties of rubber , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[4]  J. Barber,et al.  Bounds on the electrical resistance between contacting elastic rough bodies , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  R. Pohrt,et al.  Investigation of the dry normal contact between fractal rough surfaces using the reduction method, comparison to 3D simulations , 2012 .

[6]  F. P. Bowden,et al.  The Friction and Lubrication of Solids , 1964 .

[7]  Roman Pohrt,et al.  Normal contact stiffness of elastic solids with fractal rough surfaces. , 2012, Physical review letters.

[8]  J. Radok,et al.  Visco-elastic stress analysis , 1957 .

[9]  L. Prandtl,et al.  Ein Gedankenmodell für den Zerreißvorgang spröder Körper , 1933 .

[10]  V. Popov Contact Mechanics and Friction: Physical Principles and Applications , 2010 .

[11]  Valentin L. Popov,et al.  Using hierarchical memory to calculate friction force between fractal rough solid surface and elastomer with arbitrary linear rheological properties , 2011 .

[12]  Thomas Geike,et al.  Mapping of three-dimensional contact problems into one dimension. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  J. Archard Elastic deformation and the laws of friction , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[14]  V. Popov Contact Mechanics and Friction , 2010 .

[15]  K. Kendall,et al.  Surface energy and the contact of elastic solids , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[16]  Ernst Meyer,et al.  Nanoscience: Friction and Rheology on the Nanometer Scale , 1996 .

[17]  Mark O. Robbins,et al.  Elastic contact between rough surfaces: Effect of roughness at large and small wavelengths , 2007 .

[18]  Martin H. Müser,et al.  Practical Green’s function approach to the simulation of elastic semi-infinite solids , 2006 .

[19]  En-Jui Lee,et al.  VISCOELASTIC STRESS ANALYSIS , 1958 .

[20]  Markus Heß,et al.  On the reduction method of dimensionality: The exact mapping of axisymmetric contact problems with and without adhesion , 2012 .

[21]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[22]  Valentin L. Popov,et al.  A theory of the transition from static to kinetic friction in boundary lubrication layers , 2000 .

[23]  V. Popov,et al.  Fractal Tomlinson model for mesoscopic friction: from microscopic velocity-dependent damping to macroscopic Coulomb friction. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Sergey G. Psakhie,et al.  Numerical simulation methods in tribology , 2007 .

[25]  G. Braunss L. D. Landau und E. M. Lifschitz, Lehrbuch der Theoretischen Physik, Band VII, Elastizitätstheorie. (Übers. a. d. Russ.). VIII + 183 S. m. 28 Abb. Berlin 1965. Akademie‐Verlag. Preis geb. 16,– M , 1968 .

[26]  D. Maugis Contact, Adhesion and Rupture of Elastic Solids , 2000 .

[27]  B. Persson Contact mechanics for randomly rough surfaces , 2006, cond-mat/0603807.

[28]  B. Persson,et al.  Transverse and normal interfacial stiffness of solids with randomly rough surfaces , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[29]  Tristan Sharp,et al.  Stiffness of contacts between rough surfaces. , 2010, Physical review letters.

[30]  L. Prandtl,et al.  Ein Gedankenmodell zur kinetischen Theorie der festen Körper , 1928 .

[31]  Valentin L. Popov,et al.  Force of friction between fractal rough surface and elastomer , 2010 .

[32]  I. N. Sneddon The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile , 1965 .