Gain-bandwidth characteristics of thin avalanche photodiodes

The frequency-response characteristics of avalanche photodiodes (APDs) with thin multiplication layers are investigated by means of a recurrence technique that incorporates the history dependence of ionization coefficients. In addition, to characterize the autocorrelation function of the impulse response, new recurrence equations are derived and solved using a parallel computer. The mean frequency response and the gain-bandwidth product are computed and a simple model for the dependence of the gain-bandwidth product on the multiplication-layer width is set forth for GaAs, InP, Al/sub 0.2/Ga/sub 0.8/As, and In/sub 0.52/Al/sub 0.48/As APDs. It is shown that the dead-space effect leads to a reduction (up to 30%) in the bandwidth from that predicted by the conventional multiplication theory. Notably, calculation of the power-spectral density of the photocurrent reveals that the presence of dead space also results in a reduction in the fluctuations in the frequency response. This result is the spectral generalization of the reduction in the excess noise factor in thin APDs and reveals an added advantage of using thin APDs in ultrafast receivers.

[1]  Majeed M. Hayat,et al.  A new approach for computing the bandwidth statistics of avalanche photodiodes , 2000 .

[2]  M. J. Deen,et al.  A simplified approach to time-domain modeling of avalanche photodiodes , 1998 .

[3]  Joe C. Campbell,et al.  Frequency response of InP/InGaAsP/InGaAs avalanche photodiodes , 1989 .

[4]  J. David,et al.  Avalanche Multiplication in Al Ga As ( ) , 2000 .

[5]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[6]  R. B. Emmons,et al.  Avalanche photodiode frequency response , 1967 .

[7]  R. C. Tozer,et al.  Treatment of soft threshold in impact ionization , 2001 .

[8]  C. R. Crowell,et al.  Ionization coefficients in semiconductors: A nonlocalized property , 1974 .

[9]  J.C. Campbell,et al.  Waveguide avalanche photodiode operating at 1.55 μm with a gain-bandwidth product of 320 GHz , 2001, IEEE Photonics Technology Letters.

[10]  Bahaa E. A. Saleh,et al.  Effect of dead space on the excess noise factor and time response of avalanche photodiodes , 1990 .

[11]  A. Lacaita,et al.  Dead space approximation for impact ionization in silicon , 1996 .

[12]  Bahaa E. A. Saleh,et al.  Statistical properties of the impulse response function of double-carrier multiplication avalanche photodiodes including the effect of dead space , 1992 .

[13]  Bahaa E. A. Saleh,et al.  Effect of dead space on gain and noise in Si and GaAs avalanche photodiodes , 1992 .

[14]  John E. Bowers,et al.  Frequency response of avalanche photodetectors with separate absorption and multiplication layers , 1996 .

[15]  B.E.A. Saleh,et al.  Time and frequency response of the conventional avalanche photodiode , 1986, IEEE Transactions on Electron Devices.

[16]  J. David,et al.  Impact ionization probabilities as functions of two-dimensional space and time , 2001 .

[17]  R. C. Tozer,et al.  Low multiplication noise thin Al/sub 0.6/Ga/sub 0.4/As avalanche photodiodes , 2001 .

[18]  G. E. Stillman,et al.  Electron and hole impact ionization coefficients in InP determined by photomultiplication measurements , 1982 .

[19]  I. M. Naqvi,et al.  Effects of time dependence of multiplication process on avalanche noise , 1973 .

[20]  Chee Hing Tan,et al.  Low multiplication noise thin Al0.6Ga0.4As avalanche photodiodes , 2001 .

[21]  M. Teich,et al.  Impact-ionization and noise characteristics of thin III-V avalanche photodiodes , 2001 .

[22]  M. Teich,et al.  Spectral properties of photocurrent fluctuations in avalanche photodiodes , 1992, Optical Society of America Annual Meeting.

[23]  John P. R. David,et al.  Avalanche multiplication noise characteristics in thin GaAs p/sup +/-i-n/sup +/ diodes , 1998 .

[24]  Bahaa E. A. Saleh,et al.  Theory of the temporal response of a simple multiquantum-well avalanche photodiode , 1988 .

[25]  Joe C. Campbell,et al.  Noise characteristics of thin multiplication region GaAs avalanche photodiodes , 1996 .

[26]  J. David,et al.  Avalanche multiplication in Al/sub x/Ga/sub 1-x/As (x=0 to 0.60) , 2000 .

[27]  Bahaa E. A. Saleh,et al.  Effect of dead space on gain and noise double-carrier-multiplication avalanche photodiodes , 1992, Optical Society of America Annual Meeting.

[28]  R. LaViolette,et al.  A non-Markovian model of avalanche gain statistics for a solid-state photomultiplier , 1989 .

[29]  A. Holmes,et al.  Waveguide In/sub 0.53/Ga/sub 0.47/As-In/sub 0.52/Al/sub 0.48/As avalanche photodiode , 2000, IEEE Photonics Technology Letters.

[30]  Bahaa E. A. Saleh,et al.  Breakdown voltage in thin III–V avalanche photodiodes , 2001 .

[31]  J.C. Campbell,et al.  Resonant-cavity separate absorption, charge and multiplication avalanche photodiodes with high-speed and high gain-bandwidth product , 1998, IEEE Photonics Technology Letters.

[32]  Bahaa E. A. Saleh,et al.  Dead-space-based theory correctly predicts excess noise factor for thin GaAs and AlGaAs avalanche photodiodes , 2000 .

[33]  R. Mcintyre Multiplication noise in uniform avalanche diodes , 1966 .

[34]  J.C. Campbell,et al.  Impact ionization characteristics of III-V semiconductors for a wide range of multiplication region thicknesses , 2000, IEEE Journal of Quantum Electronics.

[35]  D. Herbert Theory of SiGe waveguide avalanche detectors operating at /spl lambda/=1.3 /spl mu/m , 1998 .

[36]  Noise properties and time response of the staircase avalanche photodiode , 1985 .

[37]  R. J. McIntyre,et al.  A new look at impact ionization-Part I: A theory of gain, noise, breakdown probability, and frequency response , 1999 .

[38]  J.C. Campbell,et al.  Resonant-cavity InGaAs-InAlAs avalanche photodiodes with gain-bandwidth product of 290 GHz , 1999, IEEE Photonics Technology Letters.

[39]  K. Brennan,et al.  Experimental determination of impact ionization coefficients in , 1983, IEEE Electron Device Letters.

[40]  M. Karim,et al.  An analytical approximation for the excess noise factor of avalanche photodiodes with dead space , 1999, IEEE Electron Device Letters.

[41]  Joe C. Campbell,et al.  Frequency response of InP/InGaAsP/InGaAs avalanche photodiodes with separate absorption "grading" and multiplication regions , 1985 .

[42]  Bahaa E. A. Saleh,et al.  Dead-space theory predictions of excess-noise factor, breakdown voltage, and frequency response for thin avalanche photodiodes , 2001, SPIE OPTO.

[43]  K. Makita,et al.  Gain-bandwidth product analysis of InAlGaAs-InAlAs superlattice avalanche photodiodes , 1996, IEEE Photonics Technology Letters.

[44]  A. Holmes,et al.  High-speed and low-noise avalanche photodiode operating at 1.06 /spl mu/m , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[45]  C. Hu,et al.  A new look at impact ionization-Part II: Gain and noise in short avalanche photodiodes , 1999 .

[46]  Joe C. Campbell,et al.  Performance of thin separate absorption, charge, and multiplication avalanche photodiodes , 1998 .

[47]  J. David,et al.  A Monte Carlo investigation of multiplication noise in thin p/sup +/-i-n/sup +/ GaAs avalanche photodiodes , 1998 .