Hydration kinetics and microstructure development of Ultra-High Performance Concrete (UHPC) by high volume of phosphorus slag powder

[1]  N. Makul,et al.  Recent trends in ultra-high performance concrete (UHPC): Current status, challenges, and future prospects , 2022, Construction and Building Materials.

[2]  Songhui Liu,et al.  Chloride binding of early CO2-cured Portland cement-fly ash-GGBS ternary pastes , 2022, Cement and Concrete Composites.

[3]  N. Banthia,et al.  Nanomaterials in ultra-high-performance concrete (UHPC) – A review , 2022, Cement and Concrete Composites.

[4]  C. Shi,et al.  Mixture design methods for ultra-high-performance concrete - a review , 2021, Cement and Concrete Composites.

[5]  O. Isgor,et al.  Predicting pore volume, compressive strength, pore connectivity, and formation factor in cementitious pastes containing fly ash , 2021 .

[6]  Y. Bao,et al.  New development of ultra-high-performance concrete (UHPC) , 2021, Composites Part B: Engineering.

[7]  M. Santhanam,et al.  Towards ternary binders involving limestone additions — A review , 2021 .

[8]  O. Isgor,et al.  Estimating reaction kinetics of cementitious pastes containing fly ash , 2020 .

[9]  Y. Tai,et al.  Effect of component materials and mixing protocol on the short-term performance of generic ultra-high-performance concrete , 2020 .

[10]  Rui Yu,et al.  Low carbon design of an Ultra-High Performance Concrete (UHPC) incorporating phosphorous slag , 2019 .

[11]  F. Aslani,et al.  Corrosion behavior and flexural performance of reinforced concrete/ultrahigh toughness cementitious composite (RC/UHTCC) beams under sustained loading and shrinkage cracking , 2019, Construction and Building Materials.

[12]  N. Shafiq,et al.  Ultra-high performance concrete: From fundamental to applications , 2018, Case Studies in Construction Materials.

[13]  Mi Zhou,et al.  Application of Ultra-High Performance Concrete in bridge engineering , 2018, Construction and Building Materials.

[14]  Libya Ahmed Sbia,et al.  Study on Field Thermal Curing of Ultra-High-Performance Concrete Employing Heat of Hydration , 2017 .

[15]  Junliang Yang,et al.  Phase transformation of glass-ceramics produced by naturally cooled yellow phosphorus slag during calcination , 2017 .

[16]  Wei Sun,et al.  Effect of cement substitution by limestone on the hydration and microstructural development of ultra-high performance concrete (UHPC) , 2017 .

[17]  Jinqiang Hu Comparison between the effects of superfine steel slag and superfine phosphorus slag on the long-term performances and durability of concrete , 2017, Journal of Thermal Analysis and Calorimetry.

[18]  Nemkumar Banthia,et al.  Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review , 2016 .

[19]  S. Pyo,et al.  Enhancing flowability and sustainability of ultra high performance concrete incorporating high replacement levels of industrial slags , 2016 .

[20]  Ravindra K. Dhir,et al.  Limestone addition effects on concrete porosity , 2016 .

[21]  A. Allahverdi,et al.  Influence of curing conditions on the mechanical and physical properties of chemically-activated phosphorous slag cement , 2016 .

[22]  C. Shi,et al.  A review on ultra high performance concrete: Part I. Raw materials and mixture design , 2015 .

[23]  Fazhou Wang,et al.  Properties and microstructure of reactive powder concrete having a high content of phosphorous slag powder and silica fume , 2015 .

[24]  C. Shi,et al.  A review on ultra high performance concrete: Part II. Hydration, microstructure and properties , 2015 .

[25]  M. Lachemi,et al.  Nano-modification to improve the ductility of cementitious composites , 2015 .

[26]  H Zhao,et al.  The properties of the self-compacting concrete with fly ash and ground granulated blast furnace slag mineral admixtures , 2015 .

[27]  J. Skibsted,et al.  Carbonation of C–S–H and C–A–S–H samples studied by 13C, 27Al and 29Si MAS NMR spectroscopy , 2015 .

[28]  A. Rashad An investigation of high-volume fly ash concrete blended with slag subjected to elevated temperatures , 2015 .

[29]  Mohd Zamin Jumaat,et al.  Feasibility study of high volume slag as cement replacement for sustainable structural lightweight oil palm shell concrete , 2015 .

[30]  Hjh Jos Brouwers,et al.  Development of an eco-friendly Ultra-High Performance Concrete (UHPC) with efficient cement and mineral admixtures uses , 2015 .

[31]  R. Snellings,et al.  The existence of amorphous phase in Portland cements: Physical factors affecting Rietveld quantitative phase analysis , 2014 .

[32]  L. Yang,et al.  Utilization of Phosphorus Slag and Fly Ash for the Preparation of Ready-Mixed Mortar , 2013 .

[33]  Yanzhou Peng,et al.  Preparation of Ultra-High Performance Concrete Using Phosphorous Slag Powder , 2013 .

[34]  M. García-Maté,et al.  Rietveld quantitative phase analysis of Yeelimite-containing cements , 2012 .

[35]  Antoine E. Naaman,et al.  Ultra-High Performance Concrete with Compressive Strength Exceeding 150 MPa (22 ksi): A Simpler Way , 2011 .

[36]  T. Kowald,et al.  Phase development in normal and ultra high performance cementitious systems by quantitative X-ray analysis and thermoanalytical methods , 2009 .

[37]  D. Liu,et al.  Research on the Strengthening Effect of Phosphorus Slag Powder on Cement-Based Materials , 2009 .

[38]  G. Saoût,et al.  Influence of limestone on the hydration of Portland cements , 2008 .

[39]  B. Lothenbach,et al.  Thermodynamic Modelling of the Effect of Temperature on the Hydration and Porosity of Portland Cement , 2008 .

[40]  S. Akyuz,et al.  An experimental study on optimum usage of GGBS for the compressive strength of concrete , 2007 .

[41]  J. Waerenborgh,et al.  Magnesium doping on brownmillerite Ca2FeAlO5 , 2007 .

[42]  C. Chiu,et al.  A preliminary study of reactive powder concrete as a new repair material , 2007 .

[43]  R. D. Hooton,et al.  Chloride resistance of high-performance concretes subjected to accelerated curing , 2004 .

[44]  K. Scrivener,et al.  Quantitative study of Portland cement hydration by X-ray diffraction/rietveld analysis and independent methods , 2004 .

[45]  Javier Campo,et al.  The superstructure of C3S from synchrotron and neutron powder diffraction and its role in quantitative phase analyses , 2002 .

[46]  T Sedran,et al.  Optimization of ultra-high-performance concrete by the use of a packing model , 1994 .

[47]  D. Grebille,et al.  Hydrogen thermal motion in calcium hydroxide: Ca(OH)2 , 1993 .

[48]  Ching,et al.  Electronic, optical, and structural properties of some wurtzite crystals. , 1993, Physical review. B, Condensed matter.

[49]  W. Abdel Bestimmung der Kristallstruktur von CaSO4(H2O)0,5 mit Röntgenbeugungsmethoden und mit Potentialprofil-Rechnungen , 1993 .

[50]  Shi Caijun,et al.  Investigation on some factors affecting the characteristics of alkali-phosphorus slag cement , 1989 .

[51]  N. N. Nevskii,et al.  Crystal structure of the rhombohedral modification of tricalcium silicate Ca 3 SiO 5 , 1985 .

[52]  J. Jeffery,et al.  The crystal structure of tricalcium aluminate, Ca3Al2O6 , 1975 .

[53]  H. Taylor,et al.  Crystal Structure of Ettringite , 1968, Nature.

[54]  R. Wyckoff The crystal structures of some carbonates of the calcite group , 1920 .