Tetrahedral mesh generation for solids based on alternating sum of volumes

Abstract Decomposition of a three-dimensional non-convex polyhedral object into tetrahedra using few or no `Steiner' points assumes both theoretical and practical importance. It has been known that the determination of whether a polyhedron can be tetrahedralized is NP-complete. This prompts the investigation of the tetrahedralization of special classes of polyhedra, including convex, star-shaped, monotone, and isothetic. This paper identifies a special class of polyhedra that can be tetrahedralized without using `Steiner' points. The proposed tetrahedralization algorithm utilizes a structure provided by the alternating sum of volumes process (a convex decomposition method) so that a complex solid object can first be decomposed into a set of simpler objects, namely conjuncts. The concatenation of the tetrahedralization of these conjuncts gives rise to the tetrahedralization of the original solid object.

[1]  Ron Y. Pinter,et al.  Polygon Triangulation: Efficiency and Minimality , 1986, J. Algorithms.

[2]  ARISTIDES A. G. REQUICHA,et al.  Representations for Rigid Solids: Theory, Methods, and Systems , 1980, CSUR.

[3]  Yong Se Kim,et al.  Recognition of form features using convex decomposition , 1992, Comput. Aided Des..

[4]  Larry L. Schumaker,et al.  Triangulations in CAGD , 1993, IEEE Computer Graphics and Applications.

[5]  K. Tang,et al.  Algorithmic aspects of alternating sum of volumes. Part 1: Data structure and difference operation , 1991, Comput. Aided Des..

[6]  Chandrajit L. Bajaj,et al.  Convex Decomposition of Polyhedra and Robustness , 1992, SIAM J. Comput..

[7]  J.-L. Coulomb,et al.  A pyramidal element to link hexahedral, prismatic and tetrahedral edge finite elements , 1997 .

[8]  Kazufumi Kaneda,et al.  A novel tetrahedral mesh generation method for rotating machines including end-coil region , 1996 .

[9]  Carl Ollivier-Gooch,et al.  Tetrahedral mesh improvement using swapping and smoothing , 1997 .

[10]  S. Mohan,et al.  Three-dimensional finite element mesh generation using Delaunay triangulation , 1993, Proceedings of IEEE Antennas and Propagation Society International Symposium.

[11]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[12]  J. O'Rourke Art gallery theorems and algorithms , 1987 .

[13]  Tony C. Woo,et al.  A Combinatorial Analysis of Boundary Data Structure Schemata , 1985, IEEE Computer Graphics and Applications.

[14]  L. Seneviratne,et al.  Triangulation-based path planning for a mobile robot , 1997 .

[15]  K. Tang,et al.  Algorithmic aspects of alternating sum of volumes. Part 2: Nonconvergence and its remedy , 1991, Comput. Aided Des..

[16]  E. Schönhardt,et al.  Über die Zerlegung von Dreieckspolyedern in Tetraeder , 1928 .

[17]  Kevin Weiler Topological Structures for Geometric Modeling , 1986 .

[18]  Hao Chen,et al.  An accelerated triangulation method for computing the skeletons of free-form solid models , 1997, Comput. Aided Des..

[19]  Bernard Chazelle,et al.  Triangulating a non-convex polytype , 1989, SCG '89.

[20]  Bernard Chazelle Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..

[21]  Lauri Kettunen,et al.  Tetrahedral mesh generation in convex primitives by maximizing solid angles , 1994 .

[22]  David G. Kirkpatrick,et al.  Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..

[23]  Yong Se Kim,et al.  A Convex Decomposition Using Convex Hulls and Local Cause of Its Non-Convergence , 1992 .

[24]  Oleg R. Musin Properties of the Delaunay triangulation , 1997, SCG '97.

[25]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[26]  Raimund Seidel,et al.  On the difficulty of tetrahedralizing 3-dimensional non-convex polyhedra , 1989, SCG '89.

[27]  Robert E. Tarjan,et al.  Triangulating a Simple Polygon , 1978, Inf. Process. Lett..

[28]  Chi King Lee,et al.  AUTOMATIC ADAPTIVE 3‐D FINITE ELEMENT REFINEMENT USING DIFFERENT‐ORDER TETRAHEDRAL ELEMENTS , 1997 .

[29]  Alan E. Middleditch,et al.  Convex Decomposition of Simple Polygons , 1984, TOGS.

[30]  D. Wilde,et al.  A Convergent Convex Decomposition of Polyhedral Objects , 1992 .

[31]  R. Dutton,et al.  Delaunay triangulation and 3D adaptive mesh generation , 1997 .

[32]  David G. Kirkpatrick,et al.  Polygon triangulation inO(n log logn) time with simple data structures , 1992, Discret. Comput. Geom..