Tetrahedral mesh generation for solids based on alternating sum of volumes
暂无分享,去创建一个
Kai Tang | Shuo-Yan Chou | Tony C. Woo | T. Woo | S. Chou | K. Tang | Lin-Lin Chen | Lin-Lin Chen
[1] Ron Y. Pinter,et al. Polygon Triangulation: Efficiency and Minimality , 1986, J. Algorithms.
[2] ARISTIDES A. G. REQUICHA,et al. Representations for Rigid Solids: Theory, Methods, and Systems , 1980, CSUR.
[3] Yong Se Kim,et al. Recognition of form features using convex decomposition , 1992, Comput. Aided Des..
[4] Larry L. Schumaker,et al. Triangulations in CAGD , 1993, IEEE Computer Graphics and Applications.
[5] K. Tang,et al. Algorithmic aspects of alternating sum of volumes. Part 1: Data structure and difference operation , 1991, Comput. Aided Des..
[6] Chandrajit L. Bajaj,et al. Convex Decomposition of Polyhedra and Robustness , 1992, SIAM J. Comput..
[7] J.-L. Coulomb,et al. A pyramidal element to link hexahedral, prismatic and tetrahedral edge finite elements , 1997 .
[8] Kazufumi Kaneda,et al. A novel tetrahedral mesh generation method for rotating machines including end-coil region , 1996 .
[9] Carl Ollivier-Gooch,et al. Tetrahedral mesh improvement using swapping and smoothing , 1997 .
[10] S. Mohan,et al. Three-dimensional finite element mesh generation using Delaunay triangulation , 1993, Proceedings of IEEE Antennas and Propagation Society International Symposium.
[11] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[12] J. O'Rourke. Art gallery theorems and algorithms , 1987 .
[13] Tony C. Woo,et al. A Combinatorial Analysis of Boundary Data Structure Schemata , 1985, IEEE Computer Graphics and Applications.
[14] L. Seneviratne,et al. Triangulation-based path planning for a mobile robot , 1997 .
[15] K. Tang,et al. Algorithmic aspects of alternating sum of volumes. Part 2: Nonconvergence and its remedy , 1991, Comput. Aided Des..
[16] E. Schönhardt,et al. Über die Zerlegung von Dreieckspolyedern in Tetraeder , 1928 .
[17] Kevin Weiler. Topological Structures for Geometric Modeling , 1986 .
[18] Hao Chen,et al. An accelerated triangulation method for computing the skeletons of free-form solid models , 1997, Comput. Aided Des..
[19] Bernard Chazelle,et al. Triangulating a non-convex polytype , 1989, SCG '89.
[20] Bernard Chazelle. Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..
[21] Lauri Kettunen,et al. Tetrahedral mesh generation in convex primitives by maximizing solid angles , 1994 .
[22] David G. Kirkpatrick,et al. Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..
[23] Yong Se Kim,et al. A Convex Decomposition Using Convex Hulls and Local Cause of Its Non-Convergence , 1992 .
[24] Oleg R. Musin. Properties of the Delaunay triangulation , 1997, SCG '97.
[25] Alfred V. Aho,et al. The Design and Analysis of Computer Algorithms , 1974 .
[26] Raimund Seidel,et al. On the difficulty of tetrahedralizing 3-dimensional non-convex polyhedra , 1989, SCG '89.
[27] Robert E. Tarjan,et al. Triangulating a Simple Polygon , 1978, Inf. Process. Lett..
[28] Chi King Lee,et al. AUTOMATIC ADAPTIVE 3‐D FINITE ELEMENT REFINEMENT USING DIFFERENT‐ORDER TETRAHEDRAL ELEMENTS , 1997 .
[29] Alan E. Middleditch,et al. Convex Decomposition of Simple Polygons , 1984, TOGS.
[30] D. Wilde,et al. A Convergent Convex Decomposition of Polyhedral Objects , 1992 .
[31] R. Dutton,et al. Delaunay triangulation and 3D adaptive mesh generation , 1997 .
[32] David G. Kirkpatrick,et al. Polygon triangulation inO(n log logn) time with simple data structures , 1992, Discret. Comput. Geom..