Efficient White Noise Sampling and Coupling for Multilevel Monte Carlo with Nonnested Meshes

When solving stochastic partial differential equations (SPDEs) driven by additive spatial white noise, the efficient sampling of white noise realizations can be challenging. Here, we present a new sampling technique that can be used to efficiently compute white noise samples in a finite element method and multilevel Monte Carlo (MLMC) setting. The key idea is to exploit the finite element matrix assembly procedure and factorize each local mass matrix independently, hence avoiding the factorization of a large matrix. Moreover, in a MLMC framework, the white noise samples must be coupled between subsequent levels. We show how our technique can be used to enforce this coupling even in the case of non-nested mesh hierarchies. We demonstrate the efficacy of our method with numerical experiments. We observe optimal convergence rates for the finite element solution of the elliptic SPDEs of interest in 2D and 3D and we show convergence of the sampled field covariances. In a MLMC setting, a good coupling is enforced and the telescoping sum is respected.

[1]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[2]  C. R. Dietrich,et al.  Fast and Exact Simulation of Stationary Gaussian Processes through Circulant Embedding of the Covariance Matrix , 1997, SIAM J. Sci. Comput..

[3]  Qiang Du,et al.  Numerical Approximation of Some Linear Stochastic Partial Differential Equations Driven by Special Additive Noises , 2002, SIAM J. Numer. Anal..

[4]  Bernt Øksendal,et al.  WHITE NOISE. AN INFINITE DIMENSIONAL CALCULUS , 1995 .

[5]  Michael B. Giles Multilevel Monte Carlo methods , 2015, Acta Numerica.

[6]  Elisabeth Ullmann,et al.  Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients , 2012, Numerische Mathematik.

[7]  David Bolin,et al.  Numerical solution of fractional elliptic stochastic PDEs with spatial white noise , 2017, IMA Journal of Numerical Analysis.

[8]  Patrick E. Farrell,et al.  Conservative interpolation between volume meshes by local Galerkin projection , 2011 .

[9]  Zhongqiang Zhang,et al.  Strong and weak convergence order of finite element methods for stochastic PDEs with spatial white noise , 2016, Numerische Mathematik.

[10]  Robert D. Falgout,et al.  hypre: A Library of High Performance Preconditioners , 2002, International Conference on Computational Science.

[11]  Panayot S. Vassilevski,et al.  A Multilevel, Hierarchical Sampling Technique for Spatially Correlated Random Fields , 2017, SIAM J. Sci. Comput..

[12]  Rainer Buckdahn,et al.  Monotonicity Methods for White Noise Driven Quasi-Linear SPDEs , 1990 .

[13]  P. Whittle ON STATIONARY PROCESSES IN THE PLANE , 1954 .

[14]  K. A. Cliffe,et al.  Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..

[15]  A. Wathen Realistic Eigenvalue Bounds for the Galerkin Mass Matrix , 1987 .

[16]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[17]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[18]  Barbara I. Wohlmuth,et al.  Scheduling Massively Parallel Multigrid for Multilevel Monte Carlo Methods , 2016, SIAM J. Sci. Comput..

[19]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[20]  Matthew D. Piggott,et al.  Conservative interpolation between unstructured meshes via supermesh construction , 2009 .

[21]  Kiyosi Itô,et al.  Stationary random distributions , 1954 .

[22]  H. Rue,et al.  An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .

[23]  Wolfgang Hackbusch,et al.  Elliptic Differential Equations: Theory and Numerical Treatment , 2017 .

[24]  H. HARBRECHT,et al.  Uncertainty Quantification for PDEs with Anisotropic Random Diffusion , 2016, SIAM J. Numer. Anal..

[25]  Panayot S. Vassilevski,et al.  Scalable hierarchical PDE sampler for generating spatially correlated random fields using nonmatching meshes , 2017, Numer. Linear Algebra Appl..

[26]  G. Strang Introduction to Linear Algebra , 1993 .

[27]  Elliptic equations and Gaussian processes , 1980 .

[28]  Robert Scheichl,et al.  Finite Element Error Analysis of Elliptic PDEs with Random Coefficients and Its Application to Multilevel Monte Carlo Methods , 2013, SIAM J. Numer. Anal..

[29]  Ivo Babuska,et al.  The p and h-p Versions of the Finite Element Method, Basic Principles and Properties , 1994, SIAM Rev..

[30]  H. Harbrecht,et al.  On the low-rank approximation by the pivoted Cholesky decomposition , 2012 .

[31]  Xiaoou Li,et al.  A multilevel approach towards unbiased sampling of random elliptic partial differential equations , 2016, Advances in Applied Probability.

[32]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[33]  William Gropp,et al.  PETSc Users Manual Revision 3.4 , 2016 .

[34]  F. Lindgren,et al.  Spatial models generated by nested stochastic partial differential equations, with an application to global ozone mapping , 2011, 1104.3436.

[35]  Chris L. Farmer,et al.  Application of Stochastic Partial Differential Equations to Reservoir Property Modelling , 2010 .

[36]  Patrick E. Farrell,et al.  Galerkin projection of discrete fields via supermesh construction , 2009 .