Efficient White Noise Sampling and Coupling for Multilevel Monte Carlo with Nonnested Meshes
暂无分享,去创建一个
Marie E. Rognes | Michael B. Giles | Patrick E. Farrell | Matteo Croci | M. Giles | P. Farrell | M. Rognes | M. Croci
[1] Christophe Geuzaine,et al. Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .
[2] C. R. Dietrich,et al. Fast and Exact Simulation of Stationary Gaussian Processes through Circulant Embedding of the Covariance Matrix , 1997, SIAM J. Sci. Comput..
[3] Qiang Du,et al. Numerical Approximation of Some Linear Stochastic Partial Differential Equations Driven by Special Additive Noises , 2002, SIAM J. Numer. Anal..
[4] Bernt Øksendal,et al. WHITE NOISE. AN INFINITE DIMENSIONAL CALCULUS , 1995 .
[5] Michael B. Giles. Multilevel Monte Carlo methods , 2015, Acta Numerica.
[6] Elisabeth Ullmann,et al. Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients , 2012, Numerische Mathematik.
[7] David Bolin,et al. Numerical solution of fractional elliptic stochastic PDEs with spatial white noise , 2017, IMA Journal of Numerical Analysis.
[8] Patrick E. Farrell,et al. Conservative interpolation between volume meshes by local Galerkin projection , 2011 .
[9] Zhongqiang Zhang,et al. Strong and weak convergence order of finite element methods for stochastic PDEs with spatial white noise , 2016, Numerische Mathematik.
[10] Robert D. Falgout,et al. hypre: A Library of High Performance Preconditioners , 2002, International Conference on Computational Science.
[11] Panayot S. Vassilevski,et al. A Multilevel, Hierarchical Sampling Technique for Spatially Correlated Random Fields , 2017, SIAM J. Sci. Comput..
[12] Rainer Buckdahn,et al. Monotonicity Methods for White Noise Driven Quasi-Linear SPDEs , 1990 .
[13] P. Whittle. ON STATIONARY PROCESSES IN THE PLANE , 1954 .
[14] K. A. Cliffe,et al. Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..
[15] A. Wathen. Realistic Eigenvalue Bounds for the Galerkin Mass Matrix , 1987 .
[16] C. Schwab. P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .
[17] Barry Lee,et al. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..
[18] Barbara I. Wohlmuth,et al. Scheduling Massively Parallel Multigrid for Multilevel Monte Carlo Methods , 2016, SIAM J. Sci. Comput..
[19] Anders Logg,et al. Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .
[20] Matthew D. Piggott,et al. Conservative interpolation between unstructured meshes via supermesh construction , 2009 .
[21] Kiyosi Itô,et al. Stationary random distributions , 1954 .
[22] H. Rue,et al. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .
[23] Wolfgang Hackbusch,et al. Elliptic Differential Equations: Theory and Numerical Treatment , 2017 .
[24] H. HARBRECHT,et al. Uncertainty Quantification for PDEs with Anisotropic Random Diffusion , 2016, SIAM J. Numer. Anal..
[25] Panayot S. Vassilevski,et al. Scalable hierarchical PDE sampler for generating spatially correlated random fields using nonmatching meshes , 2017, Numer. Linear Algebra Appl..
[26] G. Strang. Introduction to Linear Algebra , 1993 .
[27] Elliptic equations and Gaussian processes , 1980 .
[28] Robert Scheichl,et al. Finite Element Error Analysis of Elliptic PDEs with Random Coefficients and Its Application to Multilevel Monte Carlo Methods , 2013, SIAM J. Numer. Anal..
[29] Ivo Babuska,et al. The p and h-p Versions of the Finite Element Method, Basic Principles and Properties , 1994, SIAM Rev..
[30] H. Harbrecht,et al. On the low-rank approximation by the pivoted Cholesky decomposition , 2012 .
[31] Xiaoou Li,et al. A multilevel approach towards unbiased sampling of random elliptic partial differential equations , 2016, Advances in Applied Probability.
[32] Michael B. Giles,et al. Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..
[33] William Gropp,et al. PETSc Users Manual Revision 3.4 , 2016 .
[34] F. Lindgren,et al. Spatial models generated by nested stochastic partial differential equations, with an application to global ozone mapping , 2011, 1104.3436.
[35] Chris L. Farmer,et al. Application of Stochastic Partial Differential Equations to Reservoir Property Modelling , 2010 .
[36] Patrick E. Farrell,et al. Galerkin projection of discrete fields via supermesh construction , 2009 .