A Legendre-Petrov-Galerkin and Chebyshev Collocation Method for Third-Order Differential Equations

A Legendre--Petrov--Galerkin (LPG) method for the third-order differential equation is developed. By choosing appropriate base functions, the method can be implemented efficiently. Also, this new approach enables us to derive an optimal rate of convergence in L2-norm. The method is applied to some nonlinear problems such as the Korteweg--de Vries (KdV) equation with the Chebyshev collocation treatment for the nonlinear term. It is a Legendre--Petrov--Galerkin and Chebyshev collocation (LPG-CC) method. Numerical experiments are given to confirm the theoretical result.

[1]  Heping Ma,et al.  Error analysis for solving the Korteweg‐de Vries equation by a Legendre pseudo‐spectral method , 2000 .

[2]  B. Guo,et al.  The Fourier pseudospectral method with a restrain operator for the Korteweg-de Vries equation , 1986 .

[3]  Edward H. Twizell,et al.  Numerical methods for the solution of the third- and fifth-order dispersive Korteweg-de Vries equations , 1995 .

[4]  N. Bressan,et al.  Truncation versus mapping in the spectral approximation to the Kortweg-De Vries equation , 1990 .

[5]  Bradley K. Alpert,et al.  A Fast Algorithm for the Evaluation of Legendre Expansions , 1991, SIAM J. Sci. Comput..

[6]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[7]  Weizhang Huang,et al.  The pseudospectral method for third-order differential equations , 1992 .

[8]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[9]  B. Guo,et al.  Spectral Methods and Their Applications , 1998 .

[10]  Jie Shen,et al.  Efficient Spectral-Galerkin Method I. Direct Solvers of Second- and Fourth-Order Equations Using Legendre Polynomials , 1994, SIAM J. Sci. Comput..

[11]  David Gottlieb,et al.  The Chebyshev-Legendre method: implementing Legendre methods on Chebyshev points , 1994 .

[12]  W. Merryfield,et al.  Properties of Collocation Third-Derivative Operators , 1993 .

[13]  H. Kreiss Numerical methods for solving time-dependent problems for partial differential equations , 1978 .

[14]  A. Quarteroni,et al.  Error analysis for spectral approximation of the Korteweg-De Vries equation , 1988 .

[15]  T. Driscoll,et al.  Regular Article: A Fast Spectral Algorithm for Nonlinear Wave Equations with Linear Dispersion , 1999 .

[16]  Jie Shen,et al.  Efficient Spectral-Galerkin Method II. Direct Solvers of Second- and Fourth-Order Equations Using Chebyshev Polynomials , 1995, SIAM J. Sci. Comput..

[17]  Jan S. Hesthaven,et al.  Integration Preconditioning of Pseudospectral Operators. I. Basic Linear Operators , 1998 .

[18]  Edward H. Twizell,et al.  A linearized implicit pseudo-spectral method for certain non-linear water wave equations , 1998 .

[19]  T. Chan,et al.  FOURIER METHODS WITH EXTENDED STABILITY INTERVALS FOR THE KORTEWEG-DE VRIES EQUATION. , 1985 .

[20]  D. Pavoni,et al.  Single and multidomain Chebyshev collocation methods for the Korteweg-de Vries equation , 1988 .

[21]  Graham F. Carey,et al.  Approximations of the KdV equation by least squares finite element , 1991 .

[22]  Bengt Fornberg,et al.  A numerical and theoretical study of certain nonlinear wave phenomena , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.