Carbon nanofibre/hydrous RuO2 nanocomposite electrodes for supercapacitors

Abstract Amorphous RuO2·xH2O and a VGCF/RuO2·xH2O nanocomposite (VGCF = vapour-grown carbon fibre) are prepared by thermal decomposition. The morphology of the materials is investigated by means of scanning electron microscopy. The electrochemical characteristics of the materials, such as specific capacitance and rate capability, are investigated by cyclic voltammetry over a voltage range of 0–1.0 V at various scan rates and with an electrolyte solution of 1.0 M H2SO4. The specific capacitance of RuO2·xH2O and VGCF/RuO2·xH2O nanocomposite electrodes at a scan rate of 10 mV s−1 is 410 and 1017 F g−1, respectively, and at 1000 mV s−1 are 258 and 824 F g−1, respectively. Measurements of ac impedance spectra are made on both the electrodes at various bias potentials to obtain a more detailed understanding of their electrochemical behaviour. Long-term cycle-life tests for 104 cycles shows that the RuO2·xH2O and VGCF/RuO2·xH2O electrodes retain 90 and 97% capacity, respectively. These encouraging results warrant further development of these electrode materials towards practical application.

[1]  Branko N. Popov,et al.  Synthesis and Characterization of MnO2-Based Mixed Oxides as Supercapacitors , 2003 .

[2]  Bin Chen,et al.  Preparation and Electrochemistry of Hydrous Ruthenium Oxide/Active Carbon Electrode Materials for Supercapacitor , 2001 .

[3]  Chi-Chang Hu,et al.  Effects of substrates on the capacitive performance of RuOx·nH2O and activated carbon–RuOx electrodes for supercapacitors , 2004 .

[4]  T. Osaka,et al.  Electrochemical modification of active carbon fiber electrode and its application to double-layer capacitor , 1996 .

[5]  R. Pekala,et al.  Organic aerogels from the polycondensation of resorcinol with formaldehyde , 1989 .

[6]  Chi-Chang Hu,et al.  Electrochemical characterization of activated carbon–ruthenium oxide nanoparticles composites for supercapacitors , 2004 .

[7]  Hang Shi,et al.  Studies of activated carbons used in double-layer capacitors , 1998 .

[8]  Patrice Simon,et al.  Possible improvements in making carbon electrodes for organic supercapacitors , 1999 .

[9]  O Ok Park,et al.  Carbon nanotube/RuO2 nanocomposite electrodes for supercapacitors , 2003 .

[10]  Il-hwan Kim,et al.  Electrochemical Characterization of Hydrous Ruthenium Oxide Thin-Film Electrodes for Electrochemical Capacitor Applications , 2006 .

[11]  Chi-Chang Hu,et al.  How to Achieve Maximum Utilization of Hydrous Ruthenium Oxide for Supercapacitors , 2004 .

[12]  Seung M. Oh,et al.  Electrochemical capacitor performance of hydrous ruthenium oxide/mesoporous carbon composite electrodes , 2003 .

[13]  W. Fang,et al.  Effect of temperature annealing on capacitive and structural properties of hydrous ruthenium oxides , 2006 .

[14]  Yasushi Murakami,et al.  Evaluation of the pseudocapacitance in RuO2 with a RuO2/GC thin film electrode , 2004 .

[15]  Zhen-tao Zhou,et al.  Pseudocapacitance characterization of hydrous ruthenium oxide prepared via cyclic voltammetric deposition , 2006 .

[16]  Zhu-de Xu,et al.  Synthesis of Ru/carbon nanocomposites by polyol process for electrochemical supercapacitor electrodes , 2006 .

[17]  Mathieu Toupin,et al.  Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor , 2004 .

[18]  Mitsuhiro Nakamura,et al.  Influence of physical properties of activated carbons on characteristics of electric double-layer capacitors , 1996 .

[19]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[20]  B. Popov,et al.  Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method , 2002 .

[21]  Debra R. Rolison,et al.  Structure of Hydrous Ruthenium Oxides: Implications for Charge Storage , 1999 .

[22]  M. Ishikawa,et al.  Effect of treatment of activated carbon fiber cloth electrodes with cold plasma upon performance of electric double-layer capacitors , 1996 .

[23]  K. Miura,et al.  High‐Capacity Electric Double‐Layer Capacitor with High‐Density‐Activated Carbon Fiber Electrodes , 2000 .

[24]  Chi-Chang Hu,et al.  The capacitive performance of activated carbon–ruthenium oxide composites for supercapacitors: effects of ultrasonic treatment in NaOH and annealing in air , 2004 .

[25]  Jae Hyun Kim,et al.  Electrochemical Characterization of Electrochemically Prepared Ruthenium Oxide/Carbon Nanotube Electrode for Supercapacitor Application , 2005 .

[26]  A. Rao,et al.  Enhanced supercapacitance of multiwalled carbon nanotubes functionalized with ruthenium oxide , 2003 .

[27]  Jae Hyun Kim,et al.  Synthesis and Characterization of Electrochemically Prepared Ruthenium Oxide on Carbon Nanotube Film Substrate for Supercapacitor Applications , 2005 .

[28]  J. L. Kaschmitter,et al.  The Aerocapacitor: An Electrochemical Double‐Layer Energy‐Storage Device , 1993 .

[29]  Chi-Chang Hu,et al.  Hydrothermal Synthesis of Hydrous Crystalline RuO2 Nanoparticles for Supercapacitors , 2004 .

[30]  Chi-Chang Hu,et al.  Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. , 2006, Nano letters.

[31]  Atsushi Ochi,et al.  Fabrication of high-power electric double-layer capacitors , 1996 .

[32]  Jim P. Zheng,et al.  Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors , 1995 .

[33]  Chi-Chang Hu,et al.  Coalescence inhibition of hydrous RuO2 crystallites prepared by a hydrothermal method , 2006 .

[34]  Chi-Chang Hu,et al.  Effects of preparation variables on the deposition rate and physicochemical properties of hydrous ruthenium oxide for electrochemical capacitors , 2001 .

[35]  Chi-Chang Hu,et al.  Annealing effects on the physicochemical characteristics of hydrous ruthenium and ruthenium–iridium oxides for electrochemical supercapacitors , 2002 .

[36]  Aoki Ichiro,et al.  Electric double-layer capacitors with sheet-type polarizable electrodes and application of the capacitors , 1996 .

[37]  Ji Liang,et al.  Processing and Performance of Electric Double-Layer Capacitors with Block-Type Carbon Nanotube Electrodes , 1999 .

[38]  Chi-Chang Hu,et al.  Improving the utilization of ruthenium oxide within thick carbon–ruthenium oxide composites by annealing and anodizing for electrochemical supercapacitors , 2002 .

[39]  Jeffrey W. Long,et al.  Voltammetric Characterization of Ruthenium Oxide-Based Aerogels and Other RuO2 Solids: The Nature of Capacitance in Nanostructured Materials , 1999 .

[40]  Takeshi Morimoto,et al.  Electric double-layer capacitor using organic electrolyte , 1996 .

[41]  W. Sugimoto,et al.  Charge storage mechanism of nanostructured anhydrous and hydrous ruthenium-based oxides , 2006 .

[42]  K. Vijayamohanan,et al.  Preparation and characterization of composite electrodes of coconut-shell-based activated carbon and hydrous ruthenium oxide for supercapacitors , 2005 .

[43]  S. Milonjić,et al.  The properties of carbon-supported hydrous ruthenium oxide obtained from RuOxHy sol , 2003 .

[44]  T. Lim,et al.  Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors. , 2005, Small.

[45]  B. Popov,et al.  Studies on activated carbon capacitor materials loaded with different amounts of ruthenium oxide , 2001 .

[46]  Hardcover,et al.  Carbon: Electrochemical and Physicochemical Properties , 1988 .

[47]  O. Joo,et al.  Electrochemical capacitance of nanocomposite films formed by loading carbon nanotubes with ruthenium oxide , 2006 .

[48]  John B. Goodenough,et al.  Supercapacitor Behavior with KCl Electrolyte , 1999 .

[49]  J. Jang,et al.  Hydrous RuO2/carbon black nanocomposites with 3D porous structure by novel incipient wetness method for supercapacitors , 2006 .

[50]  Ying-Sheng Huang,et al.  Electrochemical capacitors of RuO2 nanophase grown on LiNbO3(100) and sapphire(0001) substrates , 2005 .