Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA

The CRISPR-associated endonuclease Cas9 can be targeted to specific genomic loci by single guide RNAs (sgRNAs). Here, we report the crystal structure of Streptococcus pyogenes Cas9 in complex with sgRNA and its target DNA at 2.5 Å resolution. The structure revealed a bilobed architecture composed of target recognition and nuclease lobes, accommodating the sgRNA:DNA heteroduplex in a positively charged groove at their interface. Whereas the recognition lobe is essential for binding sgRNA and DNA, the nuclease lobe contains the HNH and RuvC nuclease domains, which are properly positioned for cleavage of the complementary and noncomplementary strands of the target DNA, respectively. The nuclease lobe also contains a carboxyl-terminal domain responsible for the interaction with the protospacer adjacent motif (PAM). This high-resolution structure and accompanying functional analyses have revealed the molecular mechanism of RNA-guided DNA targeting by Cas9, thus paving the way for the rational design of new, versatile genome-editing technologies.

[1]  Johannes Söding,et al.  The HHpred interactive server for protein homology detection and structure prediction , 2005, Nucleic Acids Res..

[2]  J. Doudna,et al.  Surveillance and Processing of Foreign DNA by the Escherichia coli CRISPR-Cas System , 2015, Cell.

[3]  Jennifer A. Doudna,et al.  Structures of the RNA-guided surveillance complex from a bacterial immune system , 2011, Nature.

[4]  Sita J. Saunders,et al.  An updated evolutionary classification of CRISPR–Cas systems , 2015, Nature Reviews Microbiology.

[5]  R. Barrangou,et al.  CRISPR/Cas, the Immune System of Bacteria and Archaea , 2010, Science.

[6]  Philippe Horvath,et al.  The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA , 2010, Nature.

[7]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[8]  Morgan L. Maeder,et al.  CRISPR RNA-guided activation of endogenous human genes , 2013, Nature Methods.

[9]  Rodrigo Lopez,et al.  Analysis Tool Web Services from the EMBL-EBI , 2013, Nucleic Acids Res..

[10]  Luke A. Gilbert,et al.  Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression , 2013, Cell.

[11]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[12]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[13]  H. Deveau,et al.  CRISPR/Cas system and its role in phage-bacteria interactions. , 2010, Annual review of microbiology.

[14]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[15]  Philippe Horvath,et al.  The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli , 2011, Nucleic acids research.

[16]  M. Nowotny,et al.  Crystal structure of RuvC resolvase in complex with Holliday junction substrate , 2013, Nucleic acids research.

[17]  Jennifer A. Doudna,et al.  A Cas9–guide RNA complex preorganized for target DNA recognition , 2015, Science.

[18]  Jeffry D. Sander,et al.  Efficient In Vivo Genome Editing Using RNA-Guided Nucleases , 2013, Nature Biotechnology.

[19]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination , 2022 .

[20]  R. Barrangou,et al.  Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria , 2012, Proceedings of the National Academy of Sciences.

[21]  Melissa M. Harrison,et al.  Genome Engineering of Drosophila with the CRISPR RNA-Guided Cas9 Nuclease , 2013, Genetics.

[22]  Max A. Horlbeck,et al.  Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation , 2014, Cell.

[23]  Yinqing Li,et al.  Crystal Structure of Staphylococcus aureus Cas9 , 2015, Cell.

[24]  Randy J. Read,et al.  Phenix - a comprehensive python-based system for macromolecular structure solution , 2012 .

[25]  Eli J. Fine,et al.  DNA targeting specificity of RNA-guided Cas9 nucleases , 2013, Nature Biotechnology.

[26]  Christopher M. Vockley,et al.  RNA-guided gene activation by CRISPR-Cas9-based transcription factors , 2013, Nature Methods.

[27]  Robert Batey Faculty Opinions recommendation of Crystal structure of Cas9 in complex with guide RNA and target DNA. , 2014 .

[28]  R. Mann,et al.  The role of DNA shape in protein-DNA recognition , 2009, Nature.

[29]  Michael S. Spilman,et al.  Structure of an RNA silencing complex of the CRISPR-Cas immune system. , 2013, Molecular cell.

[30]  R. Maehr,et al.  Functional annotation of native enhancers with a Cas9 -histone demethylase fusion , 2015, Nature Methods.

[31]  Jennifer A. Doudna,et al.  DNA interrogation by the CRISPR RNA-guided endonuclease Cas9 , 2014, Nature.

[32]  Carola Engler,et al.  Golden Gate Shuffling: A One-Pot DNA Shuffling Method Based on Type IIs Restriction Enzymes , 2009, PloS one.

[33]  J. Keith Joung,et al.  High frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells , 2013, Nature Biotechnology.

[34]  Rudolf Jaenisch,et al.  One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering , 2013, Cell.

[35]  J. Joung,et al.  Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition , 2015, Nature Biotechnology.

[36]  Philip R. Evans,et al.  How good are my data and what is the resolution? , 2013, Acta crystallographica. Section D, Biological crystallography.

[37]  David A. Scott,et al.  Rationally engineered Cas9 nucleases with improved specificity , 2015, Science.

[38]  David S. Weiss,et al.  A CRISPR-CAS System Mediates Bacterial Innate Immune Evasion and Virulence , 2013, Nature.

[39]  E. Lander,et al.  Genetic Screens in Human Cells Using the CRISPR-Cas9 System , 2013, Science.

[40]  Xavier Robert,et al.  ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins , 2003, Nucleic Acids Res..

[41]  Kira S. Makarova,et al.  Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems , 2013, Nucleic acids research.

[42]  Haruki Nakamura,et al.  Atomic structure of the RuvC resolvase: A holliday junction-specific endonuclease from E. coli , 1994, Cell.

[43]  A. Regev,et al.  Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System , 2015, Cell.

[44]  J. García-Martínez,et al.  Short motif sequences determine the targets of the prokaryotic CRISPR defence system. , 2009, Microbiology.

[45]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[46]  J. Vogel,et al.  CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III , 2011, Nature.

[47]  Stan J. J. Brouns,et al.  Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes , 2008, Science.

[48]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[49]  R. Jaenisch,et al.  One-Step Generation of Mice Carrying Reporter and Conditional Alleles by CRISPR/Cas-Mediated Genome Engineering , 2013, Cell.

[50]  G. Bricogne,et al.  [27] Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. , 1997, Methods in enzymology.

[51]  Jennifer A. Doudna,et al.  Structures of Cas9 Endonucleases Reveal RNA-Mediated Conformational Activation , 2014, Science.

[52]  J. Joung,et al.  High-fidelity CRISPR-Cas9 variants with undetectable genome-wide off-targets , 2015, Nature.

[53]  L. Hor,et al.  DNA binding and cleavage by the periplasmic nuclease Vvn: a novel structure with a known active site , 2003, The EMBO journal.

[54]  Alexandro E. Trevino,et al.  Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex , 2014, Nature.

[55]  Liisa Holm,et al.  Dali server: conservation mapping in 3D , 2010, Nucleic Acids Res..

[56]  Randall J. Platt,et al.  Optical Control of Mammalian Endogenous Transcription and Epigenetic States , 2013, Nature.

[57]  D. Suck,et al.  Crystal structure of T4 endonuclease VII resolving a Holliday junction , 2007, Nature.

[58]  G. Church,et al.  CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering , 2013, Nature Biotechnology.

[59]  L. Marraffini,et al.  CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea , 2010, Nature Reviews Genetics.

[60]  Luke A. Gilbert,et al.  CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes , 2013, Cell.

[61]  R. Terns,et al.  CRISPR-based adaptive immune systems. , 2011, Current opinion in microbiology.

[62]  Eugene V Koonin,et al.  Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. , 2015, Molecular cell.

[63]  Luciano A. Marraffini,et al.  CRISPR-Cas immunity in prokaryotes , 2015, Nature.

[64]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[65]  David A. Scott,et al.  Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity , 2013, Cell.

[66]  M. Jinek,et al.  Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease , 2014, Nature.

[67]  Tautvydas Karvelis,et al.  Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements , 2015, Genome Biology.

[68]  Stan J. J. Brouns,et al.  Type I-E CRISPR-Cas Systems Discriminate Target from Non-Target DNA through Base Pairing-Independent PAM Recognition , 2013, PLoS genetics.

[69]  David R. Liu,et al.  High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity , 2013, Nature Biotechnology.

[70]  K. Shi,et al.  Structural asymmetry in the Thermus thermophilus RuvC dimer suggests a basis for sequential strand cleavages during Holliday junction resolution , 2012, Nucleic acids research.

[71]  Kevin Cowtan,et al.  The Buccaneer software for automated model building. 1. Tracing protein chains. , 2006, Acta crystallographica. Section D, Biological crystallography.

[72]  L. Marraffini,et al.  CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA , 2008, Science.

[73]  Neville E. Sanjana,et al.  Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells , 2014, Science.

[74]  Christopher M. Vockley,et al.  Epigenome editing by a CRISPR/Cas9-based acetyltransferase activates genes from promoters and enhancers , 2015, Nature Biotechnology.