From Modern CNNs to Vision Transformers: Assessing the Performance, Robustness, and Classification Strategies of Deep Learning Models in Histopathology

[1]  Junzhou Huang,et al.  RetCCL: Clustering-guided contrastive learning for whole-slide image retrieval , 2022, Medical Image Anal..

[2]  Junzhou Huang,et al.  Transformer-based unsupervised contrastive learning for histopathological image classification , 2022, Medical Image Anal..

[3]  David J. Fleet,et al.  Robust and Efficient Medical Imaging with Self-Supervision , 2022, ArXiv.

[4]  R. G. Krishnan,et al.  Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology , 2022, ArXiv.

[5]  Xin Chen,et al.  RestainNet: a self-supervised digital re-stainer for stain normalization , 2022, Comput. Electr. Eng..

[6]  Trevor Darrell,et al.  A ConvNet for the 2020s , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  W. Samek,et al.  CLEVR-XAI: A benchmark dataset for the ground truth evaluation of neural network explanations , 2021, Inf. Fusion.

[8]  Marcin Grzegorzek,et al.  GasHisSDB: A new gastric histopathology image dataset for computer aided diagnosis of gastric cancer , 2021, Comput. Biol. Medicine.

[9]  G. Litjens,et al.  Deep learning in histopathology: the path to the clinic , 2021, Nature Medicine.

[10]  Se Young Chun,et al.  Development and operation of a digital platform for sharing pathology image data , 2021, BMC Medical Informatics and Decision Making.

[11]  Nils Strodthoff,et al.  Self-supervised representation learning from 12-lead ECG data , 2021, Comput. Biol. Medicine.

[12]  Asifullah Khan,et al.  A multi-phase deep CNN based mitosis detection framework for breast cancer histopathological images , 2021, Scientific Reports.

[13]  Jian Pei,et al.  Model complexity of deep learning: a survey , 2021, Knowledge and Information Systems.

[14]  Christopher J. Anders,et al.  Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications , 2021, Proceedings of the IEEE.

[15]  Hao Guan,et al.  Domain Adaptation for Medical Image Analysis: A Survey , 2021, IEEE Transactions on Biomedical Engineering.

[16]  Jeroen van der Laak,et al.  Residual cyclegan for robust domain transformation of histopathological tissue slides , 2021, Medical Image Anal..

[17]  Anne L. Martel,et al.  Self-supervised driven consistency training for annotation efficient histopathology image analysis , 2021, Medical Image Anal..

[18]  L. Torresani,et al.  A Petri Dish for Histopathology Image Analysis , 2021, AIME.

[19]  Pieter Abbeel,et al.  Bottleneck Transformers for Visual Recognition , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Jens Petersen,et al.  nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation , 2020, Nature Methods.

[21]  Anne L. Martel,et al.  Self supervised contrastive learning for digital histopathology , 2020, Machine Learning with Applications.

[22]  Scott M. Lundberg,et al.  Explaining by Removing: A Unified Framework for Model Explanation , 2020, J. Mach. Learn. Res..

[23]  S. Gelly,et al.  An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale , 2020, ICLR.

[24]  Claes Lundström,et al.  Survey of XAI in Digital Pathology , 2020, AI and ML for Digital Pathology.

[25]  David B. A. Epstein,et al.  Dense Steerable Filter CNNs for Exploiting Rotational Symmetry in Histology Images , 2020, IEEE Transactions on Medical Imaging.

[26]  S. Gelly,et al.  Big Transfer (BiT): General Visual Representation Learning , 2019, ECCV.

[27]  Alejandro Barredo Arrieta,et al.  Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI , 2019, Inf. Fusion.

[28]  Neofytos Dimitriou,et al.  Deep Learning for Whole Slide Image Analysis: An Overview , 2019, Front. Med..

[29]  E. Topol,et al.  A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. , 2019, The Lancet. Digital health.

[30]  Klaus-Robert Müller,et al.  Towards Explainable Artificial Intelligence , 2019, Explainable AI.

[31]  Klaus-Robert Müller,et al.  Resolving challenges in deep learning-based analyses of histopathological images using explanation methods , 2019, Scientific Reports.

[32]  A. Madabhushi,et al.  Artificial intelligence in digital pathology — new tools for diagnosis and precision oncology , 2019, Nature Reviews Clinical Oncology.

[33]  Cuntai Guan,et al.  A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[34]  M. Gurcan,et al.  Digital pathology and artificial intelligence. , 2019, The Lancet. Oncology.

[35]  Seong-Whan Lee,et al.  Relative Attributing Propagation: Interpreting the Comparative Contributions of Individual Units in Deep Neural Networks , 2019, AAAI.

[36]  Wouter M. Kouw,et al.  A Review of Domain Adaptation without Target Labels , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  K-R Müller,et al.  Scoring of tumor-infiltrating lymphocytes: From visual estimation to machine learning. , 2018, Seminars in cancer biology.

[38]  Max Welling,et al.  Rotation Equivariant CNNs for Digital Pathology , 2018, MICCAI.

[39]  Razvan Pascanu,et al.  Relational inductive biases, deep learning, and graph networks , 2018, ArXiv.

[40]  Angel Cruz-Roa,et al.  High-throughput adaptive sampling for whole-slide histopathology image analysis (HASHI) via convolutional neural networks: Application to invasive breast cancer detection , 2018, PloS one.

[41]  Nassir Navab,et al.  Staingan: Stain Style Transfer for Digital Histological Images , 2018, 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019).

[42]  Mei Wang,et al.  Deep Visual Domain Adaptation: A Survey , 2018, Neurocomputing.

[43]  Andrew H. Beck,et al.  Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer , 2017, JAMA.

[44]  Daisuke Komura,et al.  Machine Learning Methods for Histopathological Image Analysis , 2017, Computational and structural biotechnology journal.

[45]  Wojciech Samek,et al.  Methods for interpreting and understanding deep neural networks , 2017, Digit. Signal Process..

[46]  Scott Lundberg,et al.  A Unified Approach to Interpreting Model Predictions , 2017, NIPS.

[47]  Surabhi Bhargava,et al.  A Dataset and a Technique for Generalized Nuclear Segmentation for Computational Pathology , 2017, IEEE Transactions on Medical Imaging.

[48]  Mitko Veta,et al.  Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method , 2016, PloS one.

[49]  Luiz Eduardo Soares de Oliveira,et al.  A Dataset for Breast Cancer Histopathological Image Classification , 2016, IEEE Transactions on Biomedical Engineering.

[50]  Andrew Janowczyk,et al.  Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases , 2016, Journal of pathology informatics.

[51]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[52]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[53]  Fabio A. González,et al.  Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks , 2014, Medical Imaging.

[54]  Joshua M. Stuart,et al.  The Cancer Genome Atlas Pan-Cancer analysis project , 2013, Nature Genetics.

[55]  Robert F. Tate,et al.  Correlation Between a Discrete and a Continuous Variable. Point-Biserial Correlation , 1954 .

[56]  J. McIntosh,et al.  Mitosis , 1951, Methods in Molecular Biology.

[57]  Joseph Lev,et al.  The Point Biserial Coefficient of Correlation , 1949 .

[58]  Marcin Grzegorzek,et al.  GasHis-Transformer: A Multi-scale Visual Transformer Approach for Gastric Histopathology Image Classification , 2021, ArXiv.

[59]  Junzhou Huang,et al.  TransPath: Transformer-Based Self-supervised Learning for Histopathological Image Classification , 2021, MICCAI.

[60]  H. Irshad,et al.  Methods for Nuclei Detection, Segmentation, and Classification in Digital Histopathology: A Review—Current Status and Future Potential , 2014, IEEE Reviews in Biomedical Engineering.

[61]  J. Anderson Point biserial correlation , 1994 .