Hunting Gravitational Waves with Multi-Messenger Counterparts: Australia’s Role

Abstract The first observations by a worldwide network of advanced interferometric gravitational wave detectors offer a unique opportunity for the astronomical community. At design sensitivity, these facilities will be able to detect coalescing binary neutron stars to distances approaching 400 Mpc, and neutron star–black hole systems to 1 Gpc. Both of these sources are associated with gamma-ray bursts which are known to emit across the entire electromagnetic spectrum. Gravitational wave detections provide the opportunity for ‘multi-messenger’ observations, combining gravitational wave with electromagnetic, cosmic ray, or neutrino observations. This review provides an overview of how Australian astronomical facilities and collaborations with the gravitational wave community can contribute to this new era of discovery, via contemporaneous follow-up observations from the radio to the optical and high energy. We discuss some of the frontier discoveries that will be made possible when this new window to the Universe is opened.

[1]  T. Murphy,et al.  AUTOCLASSIFICATION OF THE VARIABLE 3XMM SOURCES USING THE RANDOM FOREST MACHINE LEARNING ALGORITHM , 2015, 1509.03714.

[2]  D. A. Kann,et al.  A very luminous magnetar-powered supernova associated with an ultra-long γ-ray burst , 2015, Nature.

[3]  Peter K. G. Williams,et al.  EXTRAGALACTIC SYNCHROTRON TRANSIENTS IN THE ERA OF WIDE-FIELD RADIO SURVEYS. I. DETECTION RATES AND LIGHT CURVE CHARACTERISTICS , 2015 .

[4]  A. Gomboc,et al.  Unveiling the population of orphan γ -ray bursts , 2015, 1504.02096.

[5]  E. Nakar A UNIFIED PICTURE FOR LOW-LUMINOSITY AND LONG GAMMA-RAY BURSTS BASED ON THE EXTENDED PROGENITOR OF llGRB 060218/SN 2006AJ , 2015, 1503.00441.

[6]  Brian D. Bue,et al.  THE NEEDLE IN THE 100 deg2 HAYSTACK: UNCOVERING AFTERGLOWS OF FERMI GRBs WITH THE PALOMAR TRANSIENT FACTORY , 2015, 1501.00495.

[7]  A. Schukraft,et al.  Atmospheric and Astrophysical Neutrinos above 1 TeV Interacting in IceCube , 2014, 1410.1749.

[8]  B. Patricelli,et al.  SEARCH FOR GAMMA-RAYS FROM THE UNUSUALLY BRIGHT GRB 130427A WITH THE HAWC GAMMA-RAY OBSERVATORY , 2014, 1410.1536.

[9]  P. Graff,et al.  PARAMETER ESTIMATION FOR BINARY NEUTRON-STAR COALESCENCES WITH REALISTIC NOISE DURING THE ADVANCED LIGO ERA , 2014, 1411.6934.

[10]  Imre Bartos,et al.  GALAXY SURVEY ON THE FLY: PROSPECTS OF RAPID GALAXY CATALOGING TO AID THE ELECTROMAGNETIC FOLLOW-UP OF GRAVITATIONAL WAVE OBSERVATIONS , 2014, 1410.0677.

[11]  P. Lasky,et al.  The detection efficiency of on-axis short gamma ray burst optical afterglows triggered by aLIGO/Virgo , 2014, 1409.2600.

[12]  Erik Katsavounidis,et al.  LOCALIZATION OF SHORT DURATION GRAVITATIONAL-WAVE TRANSIENTS WITH THE EARLY ADVANCED LIGO AND VIRGO DETECTORS , 2014, 1409.2435.

[13]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[14]  B. Giacomazzo,et al.  GRAVITATIONAL WAVES FROM MASSIVE MAGNETARS FORMED IN BINARY NEUTRON STAR MERGERS , 2014, 1408.0013.

[15]  Christopher Bebek,et al.  The Zwicky Transient Facility: Observing System , 2014, Astronomical Telescopes and Instrumentation.

[16]  A. Schukraft,et al.  Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube , 2014, 1407.1042.

[17]  F. Ohme,et al.  PROSPECTS FOR JOINT GRAVITATIONAL-WAVE AND ELECTROMAGNETIC OBSERVATIONS OF NEUTRON-STAR–BLACK-HOLE COALESCING BINARIES , 2014, 1406.6057.

[18]  S. Tingay,et al.  A SEARCH FOR FAST RADIO BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS , 2014, 1406.1850.

[19]  Ik Siong Heng,et al.  A BAYESIAN APPROACH TO MULTI-MESSENGER ASTRONOMY: IDENTIFICATION OF GRAVITATIONAL-WAVE HOST GALAXIES , 2014, 1406.1544.

[20]  Philip Graff,et al.  THE FIRST TWO YEARS OF ELECTROMAGNETIC FOLLOW-UP WITH ADVANCED LIGO AND VIRGO , 2014, 1404.5623.

[21]  P. Lasky,et al.  The birth of black holes: neutron star collapse times, gamma-ray bursts and fast radio bursts , 2014, 1403.6327.

[22]  Paul O'Brien,et al.  Cherenkov Telescope Array is Well Suited to Follow Up Gravitational Wave Transients , 2014, 1403.6119.

[23]  Pieter van Dokkum,et al.  Ultra–Low Surface Brightness Imaging with the Dragonfly Telephoto Array , 2014, 1401.5473.

[24]  J. Fynbo,et al.  On the nature of the "hostless" short GRBs , 2014, 1402.0766.

[25]  D. A. Kann,et al.  Prompt Emission of GRB 121217A from Gamma-Rays to the Near-Infrared , 2013, 1312.4547.

[26]  P. M'esz'aros,et al.  PROSPECTS FOR GeV–TeV DETECTION OF SHORT GAMMA-RAY BURSTS WITH EXTENDED EMISSION , 2013, 1312.0590.

[27]  D. Palmer,et al.  The Bright Optical Flash and Afterglow from the Gamma-Ray Burst GRB 130427A , 2013, Science.

[28]  A. R. Whitney,et al.  A survey for transients and variables with the Murchison Widefield Array 32-tile prototype at 154 MHz , 2013, 1311.2989.

[29]  Paul D. Lasky,et al.  Nuclear equation of state from observations of short gamma-ray burst remnants , 2013, 1311.1352.

[30]  C. Baltay,et al.  FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS , 2013, The Astrophysical Journal Supplement Series.

[31]  H. Falcke,et al.  Fast radio bursts: the last sign of supramassive neutron stars , 2013, 1307.1409.

[32]  F. Barone,et al.  Advanced Virgo: a 2nd generation interferometric gravitational wave detector , 2014 .

[33]  J. P. Rodrigues,et al.  Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector , 2013, Science.

[34]  Bing Zhang A POSSIBLE CONNECTION BETWEEN FAST RADIO BURSTS AND GAMMA-RAY BURSTS , 2013, 1310.4893.

[35]  P. Harding,et al.  SHORT GRB 130603B: DISCOVERY OF A JET BREAK IN THE OPTICAL AND RADIO AFTERGLOWS, AND A MYSTERIOUS LATE-TIME X-RAY EXCESS , 2013, 1309.7479.

[36]  J. K. Blackburn,et al.  Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts , 2013, 1309.6160.

[37]  Jean-Pierre Macquart,et al.  TEMPORAL SMEARING OF TRANSIENT RADIO SOURCES BY THE INTERGALACTIC MEDIUM , 2013, 1308.4459.

[38]  S. Burke-Spolaor,et al.  A Population of Fast Radio Bursts at Cosmological Distances , 2013, Science.

[39]  M. Mclaughlin,et al.  On the detectability of extragalactic fast radio transients , 2013, 1307.1200.

[40]  E. Berger,et al.  AN r-PROCESS KILONOVA ASSOCIATED WITH THE SHORT-HARD GRB 130603B , 2013, 1306.3960.

[41]  K. Hotokezaka,et al.  RADIATIVE TRANSFER SIMULATIONS OF NEUTRON STAR MERGER EJECTA , 2013, 1306.3742.

[42]  B. Giacomazzo,et al.  FORMATION OF STABLE MAGNETARS FROM BINARY NEUTRON STAR MERGERS , 2013, 1306.1608.

[43]  Garching,et al.  SYSTEMATICS OF DYNAMICAL MASS EJECTION, NUCLEOSYNTHESIS, AND RADIOACTIVELY POWERED ELECTROMAGNETIC SIGNALS FROM NEUTRON-STAR MERGERS , 2013, 1302.6530.

[44]  D. Wei,et al.  Signature of gravitational wave radiation in afterglows of short gamma-ray bursts? , 2013, 1302.3328.

[45]  Bing Zhang,et al.  BRIGHT BROADBAND AFTERGLOWS OF GRAVITATIONAL WAVE BURSTS FROM MERGERS OF BINARY NEUTRON STARS , 2013, 1301.0439.

[46]  A. Levan,et al.  Signatures of magnetar central engines in short GRB light curves , 2013, 1301.0629.

[47]  Bing Zhang,et al.  EARLY X-RAY AND OPTICAL AFTERGLOW OF GRAVITATIONAL WAVE BURSTS FROM MERGERS OF BINARY NEUTRON STARS , 2012, 1212.0773.

[48]  J. Curran,et al.  VAST: An ASKAP Survey for Variables and Slow Transients , 2012, Publications of the Astronomical Society of Australia.

[49]  A. R. Whitney,et al.  The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies , 2012, Publications of the Astronomical Society of Australia.

[50]  D. Coward,et al.  A redshift-observation time relation for gamma-ray bursts: evidence of a distinct subluminous population , 2012, 1206.4151.

[51]  Chongqing,et al.  The Parkes Pulsar Timing Array Project , 2006, Publications of the Astronomical Society of Australia.

[52]  M. Peter GRB AFTERGLOW PLATEAUS AND GRAVITATIONAL W AVES: M ULTI-M ESSENGER SIGNATURE OF A M ILLISECOND M AGNETAR? , 2013 .

[53]  B. Gendre,et al.  THE ULTRA-LONG GAMMA-RAY BURST 111209A: THE COLLAPSE OF A BLUE SUPERGIANT? , 2012, 1212.2392.

[54]  Tsvi Piran,et al.  SHORT VERSUS LONG AND COLLAPSARS VERSUS NON-COLLAPSARS: A QUANTITATIVE CLASSIFICATION OF GAMMA-RAY BURSTS , 2012, 1210.0068.

[55]  E. Thrane,et al.  GRAVITATIONAL WAVES FROM FALLBACK ACCRETION ONTO NEUTRON STARS , 2012, 1207.3805.

[56]  David Blair,et al.  Summed parallel infinite impulse response filters for low-latency detection of chirping gravitational waves , 2012 .

[57]  Peter S. Shawhan,et al.  Rapid alerts for following up gravitational wave event candidates , 2012, Other Conferences.

[58]  C. Broeck,et al.  SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3 , 2012, 1205.2216.

[59]  Bing Zhang,et al.  A COMPREHENSIVE ANALYSIS OF FERMI GAMMA-RAY BURST DATA. III. ENERGY-DEPENDENT T90 DISTRIBUTIONS OF GBM GRBs AND INSTRUMENTAL SELECTION EFFECT ON DURATION CLASSIFICATION , 2012, 1205.1188.

[60]  David Blair,et al.  First Low-Latency LIGO+Virgo Search for Binary Inspirals and their Electromagnetic Counterparts , 2022 .

[61]  Stephen R. Taylor,et al.  Cosmology with the lights off: Standard sirens in the Einstein Telescope era , 2012, 1204.6739.

[62]  K. S. Thorne,et al.  Implications For The Origin Of GRB 051103 From LIGO Observations , 2012, 1201.4413.

[63]  Kentaro Somiya,et al.  Detector configuration of KAGRA–the Japanese cryogenic gravitational-wave detector , 2011, 1111.7185.

[64]  E. O. Ofek,et al.  A REVISED VIEW OF THE TRANSIENT RADIO SKY , 2011, 1111.0007.

[65]  E. Berger,et al.  WHAT IS THE MOST PROMISING ELECTROMAGNETIC COUNTERPART OF A NEUTRON STAR BINARY MERGER? , 2011, 1108.6056.

[66]  Jonathan R. Gair,et al.  Cosmology using advanced gravitational-wave detectors alone , 2011, 1108.5161.

[67]  P. Lasky,et al.  Are gravitational waves from giant magnetar flares observable , 2011, 1107.1689.

[68]  Kenneth Patton,et al.  Status of the Dark Energy Survey Camera (DECam) project , 2010, Other Conferences.

[69]  E. J. Howell,et al.  Advanced Gravitational Wave Detectors: List of contributors , 2012 .

[70]  T. Hayler,et al.  Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts , 2011, 1109.3498.

[71]  Erin Kara,et al.  TOWARD EARLY-WARNING DETECTION OF GRAVITATIONAL WAVES FROM COMPACT BINARY COALESCENCE , 2011, 1107.2665.

[72]  C. Ott,et al.  SUPERNOVA FALLBACK ONTO MAGNETARS AND PROPELLER-POWERED SUPERNOVAE , 2011, 1104.0252.

[73]  Y. Levin,et al.  On the excitation of f modes and torsional modes by magnetar giant flares , 2011, 1103.0880.

[74]  Bernard F. Schutz,et al.  Networks of gravitational wave detectors and three figures of merit , 2011, 1102.5421.

[75]  S. Klimenko,et al.  Localization of gravitational wave sources with networks of advanced detectors , 2011, 1101.5408.

[76]  Miguel A. Aloy,et al.  THE MISSING LINK: MERGING NEUTRON STARS NATURALLY PRODUCE JET-LIKE STRUCTURES AND CAN POWER SHORT GAMMA-RAY BURSTS , 2011, 1101.4298.

[77]  J. Richards,et al.  ON MACHINE-LEARNED CLASSIFICATION OF VARIABLE STARS WITH SPARSE AND NOISY TIME-SERIES DATA , 2011, 1101.1959.

[78]  S. Fairhurst,et al.  Targeted coherent search for gravitational waves from compact binary coalescences , 2010, 1012.4939.

[79]  C. Broeck,et al.  SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS , 2010, 1011.4079.

[80]  S. Fairhurst,et al.  Source localization with an advanced gravitational wave detector network , 2010, 1010.6192.

[81]  L. A. Antonelli,et al.  THE AFTERGLOWS OF SWIFT-ERA GAMMA-RAY BURSTS. II. TYPE I GRB VERSUS TYPE II GRB OPTICAL AFTERGLOWS , 2008, 0804.1959.

[82]  J. Cordes,et al.  The Dynamic Radio Sky , 2004, Proceedings of the International Astronomical Union.

[83]  S. Bose,et al.  Sensitivity studies for third-generation gravitational wave observatories , 2010, 1012.0908.

[84]  D. Buskulic,et al.  Very low latency search pipeline for low mass compact binary coalescences in the LIGO S6 and Virgo VSR2 data , 2010 .

[85]  L. Nuttall,et al.  Identifying the host galaxy of gravitational wave signals , 2010, 1009.1791.

[86]  A. Klotz,et al.  The Zadko Telescope: A Southern Hemisphere Telescope for Optical Transient Searches, Multi-Messenger Astronomy and Education , 2010, Publications of the Astronomical Society of Australia.

[87]  P. N. Bhat,et al.  FERMI OBSERVATIONS OF GRB 090510: A SHORT–HARD GAMMA-RAY BURST WITH AN ADDITIONAL, HARD POWER-LAW COMPONENT FROM 10 keV TO GeV ENERGIES , 2010, 1005.2141.

[88]  K. A. Postnov,et al.  Radio precursors to neutron star binary mergings , 2010, 1004.5115.

[89]  E. Nakar,et al.  EARLY SUPERNOVAE LIGHT CURVES FOLLOWING THE SHOCK BREAKOUT , 2010, 1004.2496.

[90]  K. S. Thorne,et al.  Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors , 2010, 1003.2480.

[91]  N. T. Zinner,et al.  Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r‐process nuclei , 2010, 1001.5029.

[92]  Michael S. Warren,et al.  The Commensal Real-Time ASKAP Fast-Transients (CRAFT) Survey , 2010, Publications of the Astronomical Society of Australia.

[93]  R. Starling,et al.  Can X-ray emission powered by a spinning-down magnetar explain some gamma-ray burst light-curve features? , 2009, 0908.3798.

[94]  Stephen Poprocki,et al.  X-Pipeline: an analysis package for autonomous gravitational-wave burst searches , 2009, 0908.3665.

[95]  S. Fairhurst Triangulation of gravitational wave sources with a network of detectors , 2009, 0908.2356.

[96]  R. DeSalvo,et al.  A xylophone configuration for a third-generation gravitational wave detector , 2009, 0906.2655.

[97]  B. Metzger,et al.  Magnetized relativistic jets and long-duration GRBs from magnetar spin-down during core-collapse supernovae , 2009, 0901.3801.

[98]  et al,et al.  HESS observations of $\gamma$-ray bursts in 2003–2007 , 2009, 0901.2187.

[99]  A. Fruchter,et al.  A COMPARISON OF THE AFTERGLOWS OF SHORT- AND LONG-DURATION GAMMA-RAY BURSTS , 2008, 0806.3607.

[100]  M. Putten Gravitational Waveforms of Kerr Black Holes Interacting with High-Density Matter , 2008 .

[101]  Christian D. Ott,et al.  The gravitational-wave signature of core-collapse supernovae , 2008, 0809.0695.

[102]  D. Blair,et al.  Probing the low-luminosity gamma-ray burst population with new generation satellite detectors , 2008, 0808.4044.

[103]  T. Sakamoto,et al.  Correlations of Prompt and Afterglow Emission in Swift Long and Short Gamma-Ray Bursts , 2008, 0808.3391.

[104]  U. Kolb,et al.  NGC 300 X-1 and IC 10 X-1: a new breed of black hole binary? , 2008, 0807.0606.

[105]  C. Ott,et al.  Gravitational wave burst signal from core collapse of rotating stars , 2008, 0806.4953.

[106]  B. Metzger,et al.  Time-dependent models of accretion discs formed from compact object mergers , 2008, 0805.4415.

[107]  E. Berger THE HOST GALAXIES OF SHORT-DURATION GAMMA-RAY BURSTS: LUMINOSITIES, METALLICITIES, AND STAR FORMATION RATES , 2008, 0805.0306.

[108]  M. M. Casey,et al.  Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs , 2008 .

[109]  Peter Shawhan,et al.  LOOC UP: locating and observing optical counterparts to gravitational wave bursts , 2008, 0803.0312.

[110]  UK.,et al.  Short gamma‐ray bursts from SGR giant flares and neutron star mergers: two populations are better than one , 2008, 0802.0008.

[111]  Bing Zhang,et al.  Low-luminosity gamma-ray bursts as a distinct GRB population: a firmer case from multiple criteria constraints , 2008, 0801.4751.

[112]  Vicky Kalogera,et al.  Host Galaxies Catalog Used in LIGO Searches for Compact Binary Coalescence Events , 2007, 0706.1283.

[113]  Michael S. Bessell,et al.  SkyMapper and the Southern Sky Survey , 2008 .

[114]  A. Hopkins,et al.  Science with the Australian Square Kilometre Array Pathfinder , 2007, Publications of the Astronomical Society of Australia.

[115]  Joshua R. Smith,et al.  Implications for the origin of GRB 070201 from LIGO observations , 2007 .

[116]  M. Mclaughlin,et al.  A Bright Millisecond Radio Burst of Extragalactic Origin , 2007, Science.

[117]  A. Zezas,et al.  The Orbital Period of the Wolf-Rayet Binary IC 10 X-1: Dynamic Evidence that the Compact Object Is a Black Hole , 2007, 0709.2892.

[118]  K. Glampedakis,et al.  Modelling magnetically deformed neutron stars , 2007, 0705.1780.

[119]  E. Berger,et al.  The Prompt Gamma-Ray and Afterglow Energies of Short-Duration Gamma-Ray Bursts , 2007, astro-ph/0702694.

[120]  J. Macquart On the Detectability of Prompt Coherent Gamma-Ray Burst Radio Emission , 2007, astro-ph/0702098.

[121]  Massimo Della Valle,et al.  On the Rates of Gamma-Ray Bursts and Type Ib/c Supernovae , 2006, astro-ph/0612194.

[122]  A. Piro,et al.  Fragmentation of Collapsar Disks and the Production of Gravitational Waves , 2006, astro-ph/0610696.

[123]  A. P. Oates,et al.  SkyMapper and the Southern Sky Survey , 2007, astro-ph/0702511.

[124]  N. Leroy,et al.  Reconstruction of source location in a network of gravitational wave interferometric detectors , 2006, gr-qc/0609118.

[125]  E. O. Ofek,et al.  The Short-Hard GRB 051103: Observations and Implications for Its Nature , 2006, astro-ph/0609582.

[126]  P. Brown,et al.  The association of GRB 060218 with a supernova and the evolution of the shock wave , 2006, Nature.

[127]  K. Ioka,et al.  High-Energy Neutrinos and Cosmic Rays from Low-Luminosity Gamma-Ray Bursts? , 2006, astro-ph/0607104.

[128]  K. Kuroda,et al.  The status of LCGT , 2006 .

[129]  D. A. Kann,et al.  An optical supernova associated with the X-ray flash XRF 060218 , 2006, Nature.

[130]  C. Conselice,et al.  Long γ-ray bursts and core-collapse supernovae have different environments , 2006, Nature.

[131]  D. Frail,et al.  The Afterglow, Energetics, and Host Galaxy of the Short-Hard Gamma-Ray Burst 051221a , 2006, astro-ph/0601455.

[132]  X. Bertou,et al.  Detection of GRB with water Cherenkov detectors , 2005 .

[133]  P. B. Cameron,et al.  The afterglow and elliptical host galaxy of the short γ-ray burst GRB 050724 , 2005, Nature.

[134]  S. Rosswog,et al.  Mergers of Neutron Star-Black Hole Binaries with Small Mass Ratios: Nucleosynthesis, Gamma-Ray Bursts, and Electromagnetic Transients , 2005, astro-ph/0508138.

[135]  T. Sakamoto,et al.  A short γ-ray burst apparently associated with an elliptical galaxy at redshift z = 0.225 , 2005, Nature.

[136]  E. Ramirez-Ruiz,et al.  Closing in on a Short-Hard Burst Progenitor: Constraints from Early-Time Optical Imaging and Spectroscopy of a Possible Host Galaxy of GRB 050509b , 2005, astro-ph/0505480.

[137]  M. Miller Prompt Mergers of Neutron Stars with Black Holes , 2005, astro-ph/0505094.

[138]  París,et al.  The low-luminosity tail of the GRB distribution: The case of GRB 980425 , 2005, 0707.0931.

[139]  D. Coward Simulating a faint gamma-ray burst population , 2005, astro-ph/0504493.

[140]  E. Bloom 22nd Texas Symposium on Relativistic Astrophysics , 2005 .

[141]  E E Fenimore,et al.  A link between prompt optical and prompt γ-ray emission in γ-ray bursts , 2005, Nature.

[142]  A. Rau,et al.  An exceptionally bright flare from SGR 1806–20 and the origins of short-duration γ-ray bursts , 2005, Nature.

[143]  Bruce Allen χ2 time-frequency discriminator for gravitational wave detection , 2005 .

[144]  K. Ioka,et al.  The Cosmic Dispersion Measure from Gamma-Ray Burst Afterglows: Probing the Reionization History and the Burst Environment , 2003, astro-ph/0309200.

[145]  K. Pedersen,et al.  A very energetic supernova associated with the γ-ray burst of 29 March 2003 , 2003, Nature.

[146]  Warren R. Brown,et al.  Spectroscopic Discovery of the Supernova 2003dh Associated with GRB 030329 , 2003, astro-ph/0304173.

[147]  S. R. Kulkarni,et al.  Discovery of Early Optical Emission from GRB 021211 , 2003, astro-ph/0301377.

[148]  P. Mészáros,et al.  Gravitational Radiation from Gamma-Ray Burst Progenitors , 2002, astro-ph/0210211.

[149]  C. Cutler Gravitational Waves from Neutron Stars with Large Toroidal B-fields , 2002, gr-qc/0206051.

[150]  Amir Sagiv,et al.  Collective Processes in Relativistic Plasma and Their Implications for Gamma-Ray Burst Afterglows , 2002, astro-ph/0202337.

[151]  Chris L. Fryer,et al.  Gravitational Wave Emission from Core Collapse of Massive Stars , 2001, astro-ph/0106113.

[152]  Peter A. R. Ade,et al.  SPIE Astronomical Telescopes and Instrumentation , 2002 .

[153]  N. Andersson,et al.  THE R-MODE INSTABILITY IN ROTATING NEUTRON STARS , 2000, gr-qc/0010102.

[154]  Bing Zhang,et al.  GAMMA-RAY BURST AFTERGLOW WITH CONTINUOUS ENERGY INJECTION: SIGNATURE OF A HIGHLY MAGNETIZED MILLISECOND PULSAR , 2000 .

[155]  S. Djorgovski,et al.  The unusual afterglow of the γ-ray burst of 26 March 1998 as evidence for a supernova connection , 1999, Nature.

[156]  Tsvi Piran,et al.  Jets in Gamma-Ray Bursts , 1999 .

[157]  S. Djorgovski,et al.  The unusual afterglow of GRB 980326: evidence for the gamma-ray burst/supernova connection , 1999, astro-ph/9905301.

[158]  G. Gisler,et al.  Observation of contemporaneous optical radiation from a γ-ray burst , 1999, Nature.

[159]  Bohdan Paczy'nski,et al.  Transient Events from Neutron Star Mergers , 1998, astro-ph/9807272.

[160]  J. Hjorth,et al.  The Supernova-Gamma-Ray Burst Connection , 1998, astro-ph/9806212.

[161]  N. Andersson A New Class of Unstable Modes of Rotating Relativistic Stars , 1997, gr-qc/9706075.

[162]  L. A. Antonelli,et al.  Discovery of an X-ray afterglow associated with the γ-ray burst of 28 February 1997 , 1997, Nature.

[163]  L. A. Antonelli,et al.  Discovery of the X-Ray Afterglow of the Gamma-Ray Burst of February 28 1997 , 1997, astro-ph/9706065.

[164]  S. Shapiro,et al.  Gravitational radiation from rapidly rotating nascent neutron stars , 1994, astro-ph/9408053.

[165]  Flanagan,et al.  Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform? , 1994, Physical review. D, Particles and fields.

[166]  C. Kouveliotou,et al.  Identification of two classes of gamma-ray bursts , 1993 .

[167]  Stuart L. Shapiro,et al.  Rapidly Rotating Neutron Stars in General Relativity: Realistic Equations of State , 1993 .

[168]  T. Piran,et al.  Gravitational Waves and gamma -Ray Bursts , 1993, astro-ph/9305015.

[169]  M. Rees,et al.  Relativistic fireballs: energy conversion and time-scales , 1992 .

[170]  Christopher Thompson,et al.  Formation of very strongly magnetized neutron stars - Implications for gamma-ray bursts , 1992 .

[171]  V. Usov,et al.  Millisecond pulsars with extremely strong magnetic fields as a cosmological source of γ-ray bursts , 1992 .

[172]  T. Piran,et al.  Gamma-ray bursts as the death throes of massive binary stars , 1992, astro-ph/9204001.

[173]  B. Schutz Gravitational Radiation , 1989, gr-qc/0003069.

[174]  M. Livio,et al.  Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars , 1989, Nature.

[175]  M. Tinto Antenna patterns of interferometric detectors of gravitational waves - II. Elliptically and randomly polarized waves. , 1987 .

[176]  B. Schutz,et al.  Antenna patterns of interferometric detectors of gravitational waves – I. Linearly polarized waves , 1987 .

[177]  B. Schutz Determining the Hubble constant from gravitational wave observations , 1986, Nature.

[178]  B. Paczyński Gamma-ray bursters at cosmological distances , 1986 .

[179]  B. Y. Mills,et al.  The Molonglo Observatory Synthesis Telescope , 1981, Publications of the Astronomical Society of Australia.

[180]  J. Taylor DISCOVERY OF A PULSAR IN A BINARY SYSTEM , 1975 .

[181]  C. Helstrom,et al.  Statistical theory of signal detection , 1968 .

[182]  W. Bonnor,et al.  Gravitational Radiation , 1958, Nature.