Quantum steering borders in three-qubit systems

We discuss a family of states describing three-qubit systems in a context of quantum steering phenomena. We show that symmetric steering cannot appear between two qubits—only asymmetric steering can appear in such systems. The main aim of this paper is to discuss the possible relations between the entanglement measures and steering parameter for two-mode mixed state corresponding to the qubit–qubit subsystem. We have derived the conditions determining boundary values of the negativity parametrized by concurrence. We show that two-qubit mixed state cannot be steerable when the negativity of such state is smaller than, or equal to, its boundary value. Finally, we have found ranges of the values of the mixedness measure, parametrized by concurrence and negativity for steerable and unsteerable two-qubit mixed states.

[1]  B. Moor,et al.  A comparison of the entanglement measures negativity and concurrence , 2001, quant-ph/0108021.

[2]  S. Girvin,et al.  Observation of quantum state collapse and revival due to the single-photon Kerr effect , 2012, Nature.

[3]  Xuedong Hu,et al.  Mediated gates between spin qubits , 2012, 1207.6063.

[4]  A C Doherty,et al.  Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. , 2007, Physical review letters.

[5]  F. Nori,et al.  Experimental temporal quantum steering , 2016, Scientific Reports.

[6]  K. Berrada,et al.  a Comparative Study of Negativity and Concurrence Based on Spin Coherent States , 2010 .

[7]  M. Weides,et al.  Generation of three-qubit entangled states using superconducting phase qubits , 2010, Nature.

[8]  H. Wiseman,et al.  Unified criteria for multipartite quantum nonlocality , 2010, 1008.5014.

[9]  Q. Y. He,et al.  Scalable quantum simulation of pulsed entanglement and Einstein-Podolsky-Rosen steering in optomechanics , 2013, 1312.6474.

[10]  S. Walborn,et al.  Revealing hidden Einstein-Podolsky-Rosen nonlocality. , 2011, Physical review letters.

[11]  F. Nori,et al.  Tunable multiphonon blockade in coupled nanomechanical resonators , 2015, 1506.08622.

[12]  E. Polzik,et al.  Narrow-band frequency tunable light source of continuous quadrature entanglement , 2002, quant-ph/0205015.

[13]  A. A. Abdumalikov,et al.  Observation of resonant photon blockade at microwave frequencies using correlation function measurements. , 2011, Physical review letters.

[14]  W. Wootters,et al.  Entanglement of a Pair of Quantum Bits , 1997, quant-ph/9703041.

[15]  Yang Wang,et al.  Coherent Addressing of Individual Neutral Atoms in a 3D Optical Lattice. , 2015, Physical review letters.

[16]  F. Nori,et al.  Two-photon and three-photon blockades in driven nonlinear systems , 2012, 1212.4365.

[17]  R. Werner,et al.  Observation of one-way Einstein–Podolsky–Rosen steering , 2012, Nature Photonics.

[18]  J. K. Kalaga,et al.  Quantum correlations and entanglement in a model comprised of a short chain of nonlinear oscillators , 2016, 1611.01334.

[19]  Generalized Bell states generation in a parametrically excited nonlinear coupler , 2012 .

[20]  W. Leoński Quantum and classical dynamics for a pulsed nonlinear oscillator , 1996 .

[21]  H. J. Kimble,et al.  Photon blockade in an optical cavity with one trapped atom , 2005, Nature.

[22]  Gao-xiang Li,et al.  Steady-state one-way Einstein-Podolsky-Rosen steering in optomechanical interfaces , 2014, 1411.7837.

[23]  Erik Lucero,et al.  Quantum ground state and single-phonon control of a mechanical resonator , 2010, Nature.

[24]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[25]  S. Sarma,et al.  Six-electron semiconductor double quantum dot qubits , 2013, 1304.6064.

[26]  Paweł Horodecki,et al.  Quantum Steering Inequality with Tolerance for Measurement-Setting Errors: Experimentally Feasible Signature of Unbounded Violation. , 2017, Physical review letters.

[27]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[28]  Ou,et al.  Realization of the Einstein-Podolsky-Rosen paradox for continuous variables. , 1992, Physical review letters.

[29]  Jay M. Gambetta,et al.  Preparation and measurement of three-qubit entanglement in a superconducting circuit , 2010, Nature.

[30]  R. Tanas,et al.  Entangled states and collective nonclassical effects in two-atom systems , 2002, quant-ph/0302082.

[31]  J. Wrachtrup,et al.  Multipartite Entanglement Among Single Spins in Diamond , 2008, Science.

[32]  T. Hiroshima,et al.  Maximally entangled mixed states under nonlocal unitary operations in two qubits , 2000 .

[33]  Q. Gong,et al.  Multipartite Einstein–Podolsky–Rosen steering and genuine tripartite entanglement with optical networks , 2014, Nature Physics.

[34]  A. C. Doherty,et al.  Entanglement, einstein-podolsky-rosen correlations, bell nonlocality, and steering , 2007, 0709.0390.

[35]  Franco Nori,et al.  Temporal steering and security of quantum key distribution with mutually unbiased bases against individual attacks , 2015, 1503.00612.

[36]  J. Watrous,et al.  Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering. , 2015, Physical review letters.

[37]  S. Wehner,et al.  The Uncertainty Principle Determines the Nonlocality of Quantum Mechanics , 2010, Science.

[38]  Daniel Cavalcanti,et al.  Inequivalence of entanglement, steering, and Bell nonlocality for general measurements , 2015, 1501.03332.

[39]  W. Leoński,et al.  Quantum scissors - finite-dimensional states engineering , 2013, 1312.0118.

[40]  Qiongyi He,et al.  Einstein-Podolsky-Rosen paradox and quantum steering in a three-mode optomechanical system , 2014, 1403.1690.

[41]  R. Tanas,et al.  Possibility of producing the one-photon state in a kicked cavity with a nonlinear Kerr medium. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[42]  Rupert Ursin,et al.  Loophole-free Einstein–Podolsky–Rosen experiment via quantum steering , 2011, 1111.0760.

[43]  G. H. Aguilar,et al.  Detection of entanglement in asymmetric quantum networks and multipartite quantum steering , 2014, Nature Communications.

[44]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[45]  G. Kryuchkyan,et al.  Time-modulated type-II optical parametric oscillator: Quantum dynamics and strong Einstein-Podolsky-Rosen entanglement , 2006 .

[46]  D. J. Saunders,et al.  Experimental EPR-steering using Bell-local states , 2009, 0909.0805.

[47]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[48]  Adam Miranowicz,et al.  Two-qubit mixed states more entangled than pure states: Comparison of the relative entropy of entanglement for a given nonlocality , 2013, 1301.2969.

[49]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[50]  M. Reid,et al.  Monogamy inequalities for the Einstein-Podolsky-Rosen paradox and quantum steering , 2013, 1310.2729.

[51]  T. Sowi'nski,et al.  Ground-state entanglement of spin-1 bosons undergoing superexchange interactions in optical superlattices , 2014, 1406.3756.

[52]  E. Coronado,et al.  Three addressable spin qubits in a molecular single-ion magnet , 2016, 1610.03994.

[53]  Franco Nori,et al.  Quantifying Non-Markovianity with Temporal Steering. , 2015, Physical review letters.

[54]  John C Howell,et al.  Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion. , 2004, Physical review letters.

[55]  Reid,et al.  Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification. , 1989, Physical review. A, General physics.

[56]  V. Scarani,et al.  One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering , 2011, 1109.1435.

[57]  E. Cavalcanti,et al.  Uncertainty relations for the realization of macroscopic quantum superpositions and EPR paradoxes , 2007, 0711.2315.

[58]  Belgium,et al.  Maximal entanglement versus entropy for mixed quantum states , 2002, quant-ph/0208138.

[59]  F. Nori,et al.  Multiple-output microwave single-photon source using superconducting circuits with longitudinal and transverse couplings , 2016, 1607.08730.

[60]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[61]  A. Houck,et al.  Dispersive photon blockade in a superconducting circuit. , 2010, Physical review letters.