Functional characterization of CP-465,022, a selective, noncompetitive AMPA receptor antagonist

[1]  F. Menniti,et al.  Characterization of the binding site for a novel class of noncompetitive alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonists. , 2000, Molecular pharmacology.

[2]  B. Ballyk,et al.  Activity of 2,3-benzodiazepines at Native Rat and Recombinant Human Glutamate Receptors In Vitro: Stereospecificity and Selectivity Profiles , 1996, Neuropharmacology.

[3]  J. Wrathall,et al.  Evaluation of cardiorespiratory parameters in rats after spinal cord trauma and treatment with NBQX, an antagonist of excitatory amino acid receptors , 1996, Neuroscience Letters.

[4]  R. Bullock,et al.  Massive persistent release of excitatory amino acids following human occlusive stroke. , 1995, Stroke.

[5]  R. Bullock,et al.  Evidence for Prolonged Release of Excitatory Amino Acids in Severe Human Head Trauma , 1995, Annals of the New York Academy of Sciences.

[6]  T. Hughes,et al.  The jellyfish green fluorescent protein: A new tool for studying ion channel expression and function , 1995, Neuron.

[7]  Cha-Min Tang,et al.  Expression of Non‐NMDA Glutamate Receptor Channel Genes by Clonal Human Neurons , 1994, Journal of neurochemistry.

[8]  Keiko Sato,et al.  Antiepileptogenic and anticonvulsant effects of NBQX, a selective AMPA receptor antagonist, in the rat kindling model of epilepsy , 1994, Brain Research.

[9]  A. Buchan,et al.  AMPA antagonists: do they hold more promise for clinical stroke trials than NMDA antagonists? , 1993, Stroke.

[10]  M. Mayer,et al.  Selective modulation of desensitization at AMPA versus kainate receptors by cyclothiazide and concanavalin A , 1993, Neuron.

[11]  M. Mayer,et al.  Differential modulation by cyclothiazide and concanavalin A of desensitization at native alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid- and kainate-preferring glutamate receptors. , 1993, Molecular pharmacology.

[12]  M. Rogawski,et al.  Therapeutic potential of excitatory amino acid antagonists: channel blockers and 2,3-benzodiazepines. , 1993, Trends in pharmacological sciences.

[13]  L. Vyklický,et al.  Hippocampal neurons exhibit cyclothiazide-sensitive rapidly desensitizing responses to kainate , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  P. Suzdak,et al.  AMPA, but not NMDA, receptor antagonism is neuroprotective in gerbil global ischaemia, even when delayed 24 h. , 1993, European journal of pharmacology.

[15]  R. Huganir,et al.  The distribution of glutamate receptors in cultured rat hippocampal neurons: Postsynaptic clustering of AMPA selective subunits , 1993, Neuron.

[16]  V. Lee,et al.  Inducible expression of neuronal glutamate receptor channels in the NT2 human cell line. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[17]  R. Wenthold,et al.  Localization of AMPA receptors in the hippocampus and cerebellum of the rat using an anti-receptor monoclonal antibody , 1992, Neuroscience.

[18]  D. Lodge,et al.  The neuroprotective actions of 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline (NBQX) in a rat focal ischaemia model , 1992, Brain Research.

[19]  R. Albin,et al.  Alternative excitotoxic hypotheses , 1992, Neurology.

[20]  G. Albers,et al.  Do NMDA antagonists prevent neuronal injury? Yes. , 1992, Archives of neurology.

[21]  L. Vyklický,et al.  Molecular cloning and development analysis of a new glutamate receptor subunit isoform in cerebellum , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  J. Lerma Spermine regulates N-methyl-d-aspartate receptor desensitization , 1992, Neuron.

[23]  P. Rosenberg,et al.  Glutamate uptake disguises neurotoxic potency of glutamate agonists in cerebral cortex in dissociated cell culture , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  A. Buchan,et al.  Delayed AMPA receptor blockade reduces cerebral infarction induced by focal ischemia. , 1991, Neuroreport.

[25]  E. Nemeth,et al.  Modulation of N-methyl-d-aspartate receptor-mediated increases in cytosolic calcium in cultured rat cerebellar granule cells , 1991, Brain Research.

[26]  B. Sakmann,et al.  A family of AMPA-selective glutamate receptors. , 1990, Science.

[27]  E. Nielsen,et al.  2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline: a neuroprotectant for cerebral ischemia. , 1990, Science.

[28]  B. Koe,et al.  Enhancement of benzodiazepine binding by methaqualone and related quinazolinones , 1986 .

[29]  B. Sakmann,et al.  Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches , 1981, Pflügers Archiv.

[30]  K. McCarthy,et al.  Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue , 1980, The Journal of cell biology.

[31]  V. Sekhar,et al.  Determination of the activation parameters and the mechanism for atropisomerization of (S)-3-(2-chlorophenyl)-2-[2-(6-diethylaminomethylpyridin-2-yl)vinyl]-6-fluoroquinazolin-4(3H)-one , 2001 .

[32]  A. Ganong,et al.  Atropisomeric quinazolin-4-one derivatives are potent noncompetitive alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists. , 2001, Bioorganic & medicinal chemistry letters.

[33]  A. Chapman Glutamate receptors in epilepsy. , 1998, Progress in brain research.

[34]  S. Usuda,et al.  YM90K: pharmacological characterization as a selective and potent alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptor antagonist. , 1996, The Journal of pharmacology and experimental therapeutics.

[35]  M. Morales,et al.  Selective antagonism of AMPA receptors unmasks kainate receptor-mediated responses in hippocampal neurons , 1995, Neuron.