A Hybrid Resynthesis Model for Hammer-String Interaction of Piano Tones

This paper presents a source/resonator model of hammer-string interaction that produces realistic piano sound. The source is generated using a subtractive signal model. Digital waveguides are used to simulate the propagation of waves in the resonator. This hybrid model allows resynthesis of the vibration measured on an experimental setup. In particular, the nonlinear behavior of the hammer-string interaction is taken into account in the source model and is well reproduced. The behavior of the model parameters (the resonant part and the excitation part) is studied with respect to the velocities and the notes played. This model exhibits physically and perceptually related parameters, allowing easy control of the sound produced. This research is an essential step in the design of a complete piano model.

[1]  Balázs Bank Accurate and efficient modeling of beating and two-stage decay for string instrument synthesis , 2001 .

[2]  Julius O. Smith,et al.  Developments for the Commuted Piano , 1995, ICMC.

[3]  Julius O. Smith,et al.  Physical Modeling Using Digital Waveguides , 1992 .

[4]  Gabriel Weinreich,et al.  Coupled piano strings , 1977 .

[5]  G. Soete,et al.  Perceptual scaling of synthesized musical timbres: Common dimensions, specificities, and latent subject classes , 1995, Psychological research.

[6]  Balázs Bank Physics-Based Sound Synthesis of the Piano , 2000 .

[7]  森 太郎 Five lectures on THE ACOUSTICS OF THE PIANO, Anders Askenfelt編著(私のすすめるこの一冊)(コーヒーブレイク) , 2002 .

[8]  Richard Kronland-Martinet,et al.  The simulation of piano string vibration: from physical models to finite difference schemes and digital waveguides. , 2003, The Journal of the Acoustical Society of America.

[10]  Xavier Boutillon LE PIANO : MODÉLISATION PHYSIQUES ET DÉVELOPPEMENTS TECHNOLOGIQUES , 1990 .

[11]  Pierre Schaeffer Traité des objets musicaux , 1966 .

[12]  A. Chaigne,et al.  Numerical simulations of xylophones. I. Time-domain modeling of the vibrating bars , 1997 .

[13]  Davide Rocchesso,et al.  A Physical Piano Model for Music Performance , 1997, ICMC.

[14]  Cumhur Erkut,et al.  Methods for Modeling Realistic Playing in Acoustic Guitar Synthesis , 2001, Computer Music Journal.

[15]  Julius O. Smith,et al.  Efficient Synthesis of Stringed Musical Instruments , 1993, ICMC.

[16]  Richard Kronland-Martinet,et al.  Resynthesis of Coupled Piano String Vibrations Based on Physical Modeling , 2001 .

[17]  L. Mcbride,et al.  A technique for the identification of linear systems , 1965 .

[18]  Vesa Välimäki,et al.  Physical Modeling of Plucked String Instruments with Application to Real-Time Sound Synthesis , 1996 .

[19]  A. Chaigne,et al.  Numerical simulations of piano strings. I. A physical model for a struck string using finite difference methods , 1994 .

[20]  Richard Kronland-Martinet,et al.  Perceptual and Analytical Analysis of the effect of the Hammer Impact on the Piano Tones , 2000, ICMC.

[21]  James W. Beauchamp,et al.  Synthesis by Spectral Amplitude and "Brightness" Matching of Analyzed Musical Instrument Tones , 1981 .

[22]  Julius O. Smith,et al.  Extensions of the Karplus-Strong Plucked-String Algorithm , 1983 .

[23]  Davide Rocchesso,et al.  Generalized digital waveguide networks , 2003, IEEE Trans. Speech Audio Process..

[24]  Erik V. Jansson,et al.  From touch to string vibrations. II: The motion of the key and hammer , 1991 .

[25]  Jean Laroche,et al.  Multichannel excitation/filter modeling of percussive sounds with application to the piano , 1994, IEEE Trans. Speech Audio Process..

[26]  Julius O. Smith,et al.  Commuted Piano Synthesis , 1995, ICMC.

[27]  Erik V. Jansson,et al.  From touch to string vibrations. III: String motion and spectra , 1993 .

[28]  Xavier Boutillon Model for Piano hammers: Exper-imental Determination and Digital Simulation , 1988 .

[29]  Sølvi Ystad Sound modeling applied to flute sounds , 2000 .

[30]  Richard Kronland-Martinet,et al.  Note and Hammer Velocity Dependence of a Piano String Model Based on Coupled Digital Waveguides , 2001, ICMC.

[31]  Keld K. Jensen,et al.  Timbre Models of Musical Sounds , 1999 .

[32]  Harvey Fletcher,et al.  Quality of Piano Tones , 1962 .

[33]  Anders Askenfelt,et al.  Piano string excitation V: Spectra for real hammers and strings , 1988 .