Effect of Pore Distribution on Microstructure Development: I, Matrix Pores

A model has been developed to describe the effect of the matrix (first-generation) pore distribution on microstructure development in the final stages of sintering. A model of simultaneous densification and grain growth was used to predict the effects of the number of pores per grain and the pore size distribution on microstructure evolution. Increasing the number of pores per grain was predicted to increase the densification rate, the grain growth rate, and the relative densification rate/grain growth rate ratio. Narrowing the pore size distribution was predicted to inhibit grain growth initially and to increase the densification rate indirectly. Overall, the pore distribution was predicted to have a strong influence on microstructure development and sintering kinetics.