Comparison of the defensive elicitation activity of cerato-populin and cerato-platanin: a structural model

p. 2

[1]  A. Szabó,et al.  Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity , 1982 .

[2]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[3]  V. Seidl-Seiboth,et al.  Cerato-platanins: elicitors and effectors. , 2014, Plant science : an international journal of experimental plant biology.

[4]  F. Sbrana,et al.  Characterization of ordered aggregates of cerato-platanin and their involvement in fungus-host interactions. , 2009, Biochimica et biophysica acta.

[5]  Pascal Benkert,et al.  QMEAN: A comprehensive scoring function for model quality assessment , 2008, Proteins.

[6]  R. Hodges,et al.  1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects , 1995, Journal of biomolecular NMR.

[7]  L. Kay,et al.  Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. , 1989, Biochemistry.

[8]  A. Santini,et al.  CERATO-PLATANIN TREATED PLANE LEAVES RESTRICT CERATOCYSTIS PLATANI GROWTH AND OVEREXPRESS DEFENCE-RELATED GENES , 2008 .

[9]  C Sander,et al.  The use of position‐specific rotamers in model building by homology , 1995, Proteins.

[10]  T. Boller,et al.  Pathogens Recognition Receptors in Plants and Effectors in Microbial Innate Immunity in Plants : An Arms Race Between Pattern , 2012 .

[11]  D. Nettleton,et al.  Interaction-Dependent Gene Expression in Mla-Specified Response to Barley Powdery Mildeww⃞ , 2004, The Plant Cell Online.

[12]  S. Luti,et al.  Cerato-platanin shows expansin-like activity on cellulosic materials , 2013, Applied Microbiology and Biotechnology.

[13]  S. Kay,et al.  A Constitutive Shade-Avoidance Mutant Implicates TIR-NBS-LRR Proteins in Arabidopsis Photomorphogenic Development[W] , 2006, The Plant Cell Online.

[14]  R. Calamassi,et al.  Cytological and ultrastructural responses of Platanus acerifolia (Ait.) Willd. leaves to cerato-platanin, a protein from Ceratocystis fimbriata f.sp. platani. , 2005 .

[15]  Marco Biasini,et al.  SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information , 2014, Nucleic Acids Res..

[16]  John P. Rathjen,et al.  Plant immunity: towards an integrated view of plant–pathogen interactions , 2010, Nature Reviews Genetics.

[17]  S. Rivas,et al.  Transcriptional control of plant defence responses. , 2014, Current opinion in plant biology.

[18]  Blake C. Meyers,et al.  Genome-Wide Analysis of NBS-LRR–Encoding Genes in Arabidopsis Online version contains Web-only data. Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.009308. , 2003, The Plant Cell Online.

[19]  Bart P. H. J. Thomma,et al.  Conserved Fungal LysM Effector Ecp6 Prevents Chitin-Triggered Immunity in Plants , 2010, Science.

[20]  A. Elofsson,et al.  Can correct protein models be identified? , 2003, Protein science : a publication of the Protein Society.

[21]  P. Picciarelli,et al.  Cerato-Platanin Induces Resistance in Arabidopsis Leaves through Stomatal Perception, Overexpression of Salicylic Acid- and Ethylene-Signalling Genes and Camalexin Biosynthesis , 2014, PloS one.

[22]  Shaila C. Rössle,et al.  Homology modeling of human Toll‐like receptors TLR7, 8, and 9 ligand‐binding domains , 2009, Protein science : a publication of the Protein Society.

[23]  G Vriend,et al.  WHAT IF: a molecular modeling and drug design program. , 1990, Journal of molecular graphics.

[24]  M. Williamson Using chemical shift perturbation to characterise ligand binding. , 2013, Progress in nuclear magnetic resonance spectroscopy.

[25]  G. Cole,et al.  Molecular and biochemical characterization of a Coccidioides immitis-specific antigen , 1995, Infection and immunity.

[26]  R. Portugal,et al.  Functional diversification of cerato-platanins in Moniliophthora perniciosa as seen by differential expression and protein function specialization. , 2013, Molecular plant-microbe interactions : MPMI.

[27]  Anisotropic molecular rotational diffusion in 15N spin relaxation studies of protein mobility. , 1997, Biochemistry.

[28]  P. Schulze-Lefert,et al.  Rumble in the nuclear jungle: compartmentalization, trafficking, and nuclear action of plant immune receptors , 2007, The EMBO journal.

[29]  H H Flor,et al.  Current Status of the Gene-For-Gene Concept , 1971 .

[30]  S. Grzesiek,et al.  The Importance of Not Saturating H2o in Protein NMR : application to Sensitivity Enhancement and Noe Measurements , 1993 .

[31]  J H Prestegard,et al.  Order matrix analysis of residual dipolar couplings using singular value decomposition. , 1999, Journal of magnetic resonance.

[32]  S. Kamoun,et al.  From Guard to Decoy: A New Model for Perception of Plant Pathogen Effectors , 2008, The Plant Cell Online.

[33]  Markus Zweckstetter,et al.  NMR: prediction of molecular alignment from structure using the PALES software , 2008, Nature Protocols.

[34]  G. Martin,et al.  An NB-LRR protein required for HR signalling mediated by both extra- and intracellular resistance proteins. , 2007, The Plant journal : for cell and molecular biology.

[35]  S. Spoel,et al.  How do plants achieve immunity? Defence without specialized immune cells , 2012, Nature Reviews Immunology.

[36]  J. Hargreaves,et al.  A homologue of a gene implicated in the virulence of human fungal diseases is present in a plant fungal pathogen and is expressed during infection , 1999 .

[37]  Robert D. Finn,et al.  The Pfam protein families database , 2004, Nucleic Acids Res..

[38]  Gert Vriend,et al.  Increasing the precision of comparative models with YASARA NOVA—a self‐parameterizing force field , 2002, Proteins.

[39]  A. Konagurthu,et al.  MUSTANG: A multiple structural alignment algorithm , 2006, Proteins.

[40]  A. Palmer,et al.  Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. , 1995, Journal of molecular biology.

[41]  A. Spisni,et al.  Cerato-platanin, the first member of a new fungal protein family , 2007, Cell Biochemistry and Biophysics.

[42]  G. Pereira,et al.  Identification of a second family of genes in Moniliophthora perniciosa, the causal agent of witches' broom disease in cacao, encoding necrosis-inducing proteins similar to cerato-platanins. , 2009, Mycological research.

[43]  F. Sbrana,et al.  New proteins orthologous to cerato-platanin in various Ceratocystis species and the purification and characterization of cerato-populin from Ceratocystis populicola , 2009, Applied Microbiology and Biotechnology.

[44]  T. Pawson,et al.  Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. , 1994, Biochemistry.

[45]  Torsten Schwede,et al.  BIOINFORMATICS Bioinformatics Advance Access published November 12, 2005 The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling , 2022 .

[46]  F. Asiegbu,et al.  Distribution and bioinformatic analysis of the cerato-platanin protein family in Dikarya , 2013, Mycologia.

[47]  A. Bax,et al.  Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. , 1998, Journal of magnetic resonance.

[48]  M. Frías,et al.  The phytotoxic activity of the cerato-platanin BcSpl1 resides in a two-peptide motif on the protein surface. , 2014, Molecular plant pathology.

[49]  F. Sheu,et al.  Purification, cloning, and functional characterization of a novel immunomodulatory protein from Antrodia camphorata (bitter mushroom) that exhibits TLR2-dependent NF-κB activation and M1 polarization within murine macrophages. , 2009, Journal of agricultural and food chemistry.

[50]  A. Bax,et al.  Resolution enhancement and spectral editing of uniformly 13C-enriched proteins by homonuclear broadband 13C decoupling , 1992 .

[51]  L. Kay,et al.  Latent and active p53 are identical in conformation , 2001, Nature Structural Biology.

[52]  F. Faoro,et al.  Differential timing of defense-related responses induced by cerato-platanin and cerato-populin, two non-catalytic fungal elicitors. , 2013, Physiologia plantarum.

[53]  Ad Bax,et al.  Validation of Protein Structure from Anisotropic Carbonyl Chemical Shifts in a Dilute Liquid Crystalline Phase , 1998 .

[54]  J. Mackay,et al.  Crystal Structures of Flax Rust Avirulence Proteins AvrL567-A and -D Reveal Details of the Structural Basis for Flax Disease Resistance Specificity[W] , 2007, The Plant Cell Online.

[55]  J. Hus,et al.  Efficient analysis of macromolecular rotational diffusion from heteronuclear relaxation data , 2000, Journal of biomolecular NMR.

[56]  A. Kononowicz,et al.  R proteins as fundamentals of plant innate immunity , 2010, Cellular & Molecular Biology Letters.

[57]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[58]  A. Palmer,et al.  Protein NMR Spectroscopy: principles and practice, 2nd ed. , 2006 .

[59]  A. Sali,et al.  Modeling of loops in protein structures , 2000, Protein science : a publication of the Protein Society.

[60]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[61]  A. Santini,et al.  CERATO-PLATANIN, AN EARLY-PRODUCED PROTEIN BY CERATOCYSTIS FIMBRIATA F.SP. PLATANI, ELICITS PHYTOALEXIN SYNTHESIS IN HOST AND NON-HOST PLANTS , 2004 .

[62]  A. Kajava Structural diversity of leucine-rich repeat proteins. , 1998, Journal of molecular biology.

[63]  D. Baulcombe,et al.  Physical Association of the NB-LRR Resistance Protein Rx with a Ran GTPase–Activating Protein Is Required for Extreme Resistance to Potato virus X[W][OA] , 2007, The Plant Cell Online.

[64]  Aritra Bej,et al.  LRRsearch: An asynchronous server-based application for the prediction of leucine-rich repeat motifs and an integrative database of NOD-like receptors , 2014, Comput. Biol. Medicine.

[65]  R. Dean,et al.  The Magnaporthe grisea snodprot1 homolog, MSP1, is required for virulence. , 2007, FEMS microbiology letters.

[66]  T. Boller CHEMOPERCEPTION OF MICROBIAL SIGNALS IN PLANT CELLS , 1995 .

[67]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using Modeller , 2006, Current protocols in bioinformatics.

[68]  Jonathan D. G. Jones,et al.  The plant immune system , 2006, Nature.

[69]  F. Takken,et al.  STANDing strong, resistance proteins instigators of plant defence. , 2009, Current opinion in plant biology.

[70]  A. Rementeria,et al.  Genes and molecules involved in Aspergillus fumigatus virulence. , 2005, Revista iberoamericana de micologia.

[71]  A. Spisni,et al.  Cerato-platanin, a phytotoxic protein from Ceratocystis fimbriata: expression in Pichia pastoris, purification and characterization. , 2006, Protein expression and purification.

[72]  M. Morgante,et al.  Global expression analysis of nucleotide binding site-leucine rich repeat-encoding and related genes in Arabidopsis , 2007, BMC Plant Biology.

[73]  Hur-Song Chang,et al.  Quantitative Nature of Arabidopsis Responses during Compatible and Incompatible Interactions with the Bacterial Pathogen Pseudomonas syringae Online version contains Web-only data. Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.007591. , 2003, The Plant Cell Online.

[74]  Liam J. McGuffin,et al.  The ModFOLD4 server for the quality assessment of 3D protein models , 2013, Nucleic Acids Res..

[75]  Wei Li,et al.  Ectopic expression of MgSM1, a Cerato-platanin family protein from Magnaporthe grisea, confers broad-spectrum disease resistance in Arabidopsis. , 2009, Plant biotechnology journal.

[76]  D T Jones,et al.  Protein secondary structure prediction based on position-specific scoring matrices. , 1999, Journal of molecular biology.

[77]  Marco Biasini,et al.  Toward the estimation of the absolute quality of individual protein structure models , 2010, Bioinform..

[78]  P. McEwan,et al.  The leucine-rich repeat structure , 2008, Cellular and Molecular Life Sciences.

[79]  M. Newman,et al.  MAMP (microbe-associated molecular pattern) triggered immunity in plants , 2013, Front. Plant Sci..

[80]  G. Camici,et al.  Purification, Characterization, and Amino Acid Sequence of Cerato-platanin, a New Phytotoxic Protein from Ceratocystis fimbriata f. sp. platani * , 1999, The Journal of Biological Chemistry.

[81]  Manfred J. Sippl,et al.  Thirty years of environmental health research--and growing. , 1996, Nucleic Acids Res..

[82]  Peter N. Dodds,et al.  Six Amino Acid Changes Confined to the Leucine-Rich Repeat β-Strand/β-Turn Motif Determine the Difference between the P and P2 Rust Resistance Specificities in Flax , 2001, Plant Cell.

[83]  M. Summers,et al.  Backbone dynamics of the N-terminal domain of the HIV-1 capsid protein and comparison with the G94D mutant conferring cyclosporin resistance/dependence. , 1999, Biochemistry.

[84]  L. Mueller,et al.  Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions , 1998, Nature Structural Biology.

[85]  Sangdun Choi,et al.  Similar Structures but Different Roles – An Updated Perspective on TLR Structures , 2011, Front. Physio..

[86]  Y. Takahashi,et al.  Periodicity of leucine and tandem repetition of a 24-amino acid segment in the primary structure of leucine-rich alpha 2-glycoprotein of human serum. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[87]  Bruce A Johnson,et al.  Using NMRView to visualize and analyze the NMR spectra of macromolecules. , 2004, Methods in molecular biology.

[88]  A. Spisni,et al.  1 THE STRUCTURE OF THE ELICITOR CERATO-PLATANIN , FOUNDER OF THE CP FUNGAL PROTEIN FAMILY , REVEALS A DOUBLE Ψβ-BARREL FOLD AND CARBOHYDRATE BINDING , 2011 .