A Fast Parallel Modular Exponentiation Algorithm

Modular exponentiation is a fundamental and most time-consuming operation in several public-key cryptosystems such as the RSA cryptosystem. In this paper, we propose two new parallel algorithms. The first one is a fast parallel algorithm to multiply n numbers of a large number of bits. Then we use it to design a fast parallel algorithm for the modular exponentiation. We implement the parallel modular exponentiation algorithm on Google cloud system using a machine with 32 processors. We measured the performance of the proposed algorithm on data size from $$2^{12}$$212 to $$2^{20}$$220 bits. The results show that our work has a fast running time and more scalable than previous works.

[1]  Nadia Nedjah,et al.  Efficient Parallel Modular Exponentiation Algorithm , 2002, ADVIS.

[2]  Marc Joye,et al.  Optimal Left-to-Right Binary Signed-Digit Recoding , 2000, IEEE Trans. Computers.

[3]  Shay Gueron,et al.  Software Implementation of Modular Exponentiation, Using Advanced Vector Instructions Architectures , 2012, WAIFI.

[4]  Litian Liu,et al.  Fast, compact and symmetric modular exponentiation architecture by common-multiplicand Montgomery modular multiplications , 2013, Integr..

[5]  Der-Chyuan Lou,et al.  Fast Parallel Exponentiation Algorithm for RSA Public-Key Cryptosystem , 2006, Informatica.

[6]  Ismail San,et al.  Improving the computational efficiency of modular operations for embedded systems , 2014, J. Syst. Archit..

[7]  Mahmoud A. Smadi,et al.  Efficient FPGA Implementation of RSA Coprocessor Using Scalable Modules , 2014, FNC/MobiSPC.

[8]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[9]  Chia-Long Wu,et al.  Fast Parallel Montgomery Binary Exponentiation Algorithm Using Canonical- Signed-Digit Recoding Technique , 2009, ICA3PP.

[10]  Daniel M. Gordon,et al.  A Survey of Fast Exponentiation Methods , 1998, J. Algorithms.

[11]  Der-Chyuan Lou,et al.  An Efficient Montgomery Exponentiation Algorithm for Cryptographic Applications , 2005, Informatica.

[12]  Sebastian Fleissner GPU-Accelerated Montgomery Exponentiation , 2007, International Conference on Computational Science.

[13]  Nadia Nedjah,et al.  Parallel computation of modular exponentiation for fast cryptography , 2007, Int. J. High Perform. Syst. Archit..

[14]  J. Wrench Table errata: The art of computer programming, Vol. 2: Seminumerical algorithms (Addison-Wesley, Reading, Mass., 1969) by Donald E. Knuth , 1970 .

[15]  Nadia Nedjah,et al.  Parallel modular exponentiation using load balancing without precomputation , 2012, J. Comput. Syst. Sci..

[16]  Marc Joye,et al.  Exponent Recoding and Regular Exponentiation Algorithms , 2009, AFRICACRYPT.

[17]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[18]  Bodo Möller Algorithms for Multi-exponentiation , 2001, Selected Areas in Cryptography.

[19]  Nadia Nedjah,et al.  High-performance SoC-based implementation of modular exponentiation using evolutionary addition chains for efficient cryptography , 2011, Appl. Soft Comput..

[20]  Nigel P. Smart,et al.  Parallel cryptographic arithmetic using a redundant Montgomery representation , 2004, IEEE Transactions on Computers.

[21]  Chia-Long Wu,et al.  An efficient common-multiplicand-multiplication method to the Montgomery algorithm for speeding up exponentiation , 2009, Inf. Sci..

[22]  Chinchen Chang,et al.  An efficient multi-exponentiation scheme based on modified Booth's method , 2003 .

[23]  Chin-Chen Chang,et al.  Parallel computation of the multi-exponentiation for cryptosystems , 1997, Int. J. Comput. Math..

[24]  Chia-Long Wu,et al.  Fast exponentiation based on common-multiplicand-multiplication and minimal-signed-digit techniques , 2007, Int. J. Comput. Math..

[25]  A. B. Premkumar,et al.  A formal framework for conversion from binary to residue numbers , 2002 .

[26]  Hirosuke Yamamoto,et al.  Window and Extended Window Methods for Addition Chain and Addition-Subtraction Chain , 1998 .

[27]  Shay Gueron Enhanced Montgomery Multiplication , 2002, CHES.