Liquid crystal depolarizer based on photoalignment technology

We propose a depolarizer based on the principle of a collection of half-wave plates with randomly distributed optic axes. The design is demonstrated by means of dynamically photopatterning liquid crystal into randomly aligned homogeneous domains. We characterize the liquid crystal depolarizer for 1550 nm and C-band (1520–1610 nm). A degree of polarization of less than 5% is obtained for any linearly polarized light. This study provides a practical candidate for high-performance depolarizers.

[1]  M. Schadt,et al.  Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers , 1992 .

[2]  V. J. Mazurczyk,et al.  Polarization dependent gain in erbium doped-fiber amplifiers , 1994, IEEE Photonics Technology Letters.

[3]  John L. West,et al.  Filled liquid crystal depolarizers , 2001 .

[4]  Hoi-Sing Kwok,et al.  Diffusion model of photoaligning in azo-dye layers. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Krzysztof Perlicki Investigation of the state of polarization distribution generated by polarization scramblers on the Poincarè sphere , 2005 .

[6]  W. Osten,et al.  Polarization scramblers with plasmonic meander-type metamaterials. , 2012, Optics express.

[7]  Realizing a variable isotropic depolarizer. , 2012, Optics letters.

[8]  Michinori Honma,et al.  Liquid-crystal depolarizer consisting of randomly aligned hybrid orientation domains. , 2004, Applied optics.

[9]  J. de Sande,et al.  Polarization changes at Lyot depolarizer output for different types of input beams. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[11]  F. Heismann,et al.  High-speed polarization scrambler with adjustable phase chirp , 1996 .

[12]  D. Gray,et al.  Electrooptic polarization scramblers for optically amplified long-haul transmission systems , 1994, IEEE Photonics Technology Letters.

[13]  Vladimir G. Chigrinov,et al.  Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings , 2015 .

[14]  Wu,et al.  Birefringence dispersions of liquid crystals. , 1986, Physical review. A, General physics.

[15]  Peng Chen,et al.  Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates , 2015 .

[16]  Xiao Liang,et al.  Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes , 2015, Light: Science & Applications.

[17]  Vladimir G. Chigrinov,et al.  Generating Switchable and Reconfigurable Optical Vortices via Photopatterning of Liquid Crystals , 2014, Advanced materials.

[18]  M. Schadt,et al.  Optical patterning of multidomain LCDs , 1997 .

[19]  Vladimir G. Chigrinov,et al.  Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask , 2015, Scientific Reports.

[20]  Raman Kashyap,et al.  Fast all-fiber polarization scrambling using re-entrant Lefèvre controller , 2007 .

[21]  Wei Hu,et al.  Fast response dual-frequency liquid crystal switch with photo-patterned alignments. , 2012, Optics letters.

[22]  Martin Schadt,et al.  Optical patterning of multi-domain liquid-crystal displays with wide viewing angles , 1996, Nature.

[23]  Wei Hu,et al.  Arbitrary Photo-Patterning in Liquid Crystal Alignments Using DMD Based Lithography System , 2012 .