Akt isoform-specific effects on thyroid cancer development and progression in a murine thyroid cancer model

[1]  G. Pidgeon,et al.  The next generation of PI3K-Akt-mTOR pathway inhibitors in breast cancer cohorts. , 2018, Biochimica et biophysica acta. Reviews on cancer.

[2]  Michael C. Ostrowski,et al.  Stromal PTEN determines mammary epithelial response to radiotherapy , 2018, Nature Communications.

[3]  G. Mills,et al.  AKT isoform-specific expression and activation across cancer lineages , 2018, BMC cancer.

[4]  F. Meric-Bernstam,et al.  Targeting the PI3K pathway in cancer: are we making headway? , 2018, Nature Reviews Clinical Oncology.

[5]  J. Greenman,et al.  The Role of Chemokines in Thyroid Carcinoma. , 2017, Thyroid : official journal of the American Thyroid Association.

[6]  R. Vishwakarma,et al.  Protein kinase B: emerging mechanisms of isoform-specific regulation of cellular signaling in cancer. , 2017, Anti-cancer drugs.

[7]  D. Bar-Sagi,et al.  Crosstalk between Regulatory T Cells and Tumor-Associated Dendritic Cells Negates Anti-tumor Immunity in Pancreatic Cancer , 2017, Cell reports.

[8]  R. Lloyd,et al.  The evolving concept of cancer stem-like cells in thyroid cancer and other solid tumors , 2017, Laboratory Investigation.

[9]  D. Gabrilovich,et al.  Dendritic cells in cancer: the role revisited. , 2017, Current opinion in immunology.

[10]  Lianbo Yu,et al.  RCAN1-4 is a thyroid cancer growth and metastasis suppressor. , 2017, JCI insight.

[11]  P. Soares,et al.  Molecular Markers Involved in Tumorigenesis of Thyroid Carcinoma: Focus on Aggressive Histotypes , 2017, Cytogenetic and Genome Research.

[12]  J. Fagin,et al.  Biologic and Clinical Perspectives on Thyroid Cancer. , 2016, The New England journal of medicine.

[13]  G. Marone,et al.  The immune network in thyroid cancer , 2016, Oncoimmunology.

[14]  Amruta Ashtekar,et al.  Mouse models of thyroid cancer: A 2015 update , 2016, Molecular and Cellular Endocrinology.

[15]  A. Hague,et al.  The PI3K/Akt Pathway in Tumors of Endocrine Tissues , 2016, Front. Endocrinol..

[16]  A. Palmer,et al.  Analysis of exosome release as a cellular response to MAPK pathway inhibition. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[17]  W. Faquin,et al.  Tumor-Associated Inflammatory Cells in Thyroid Carcinomas. , 2014, Surgical pathology clinics.

[18]  R. Saunders,et al.  A Tale of Mice and Men: The WPA, the LSU Indian Room Museum, and the Emergence of Professional Archaeology in the U.S. South , 2014 .

[19]  A. Toker,et al.  Signaling specificity in the Akt pathway in biology and disease. , 2014, Advances in biological regulation.

[20]  J. Petrik,et al.  Opposing Functions of Akt Isoforms in Lung Tumor Initiation and Progression , 2014, PloS one.

[21]  Andrew H. Beck,et al.  Targeting Akt3 signaling in triple-negative breast cancer. , 2014, Cancer research.

[22]  J. Garcia-Vallejo,et al.  The physiological role of DC-SIGN: a tale of mice and men. , 2013, Trends in immunology.

[23]  K. Flaherty,et al.  BRAF in Melanoma: Current Strategies and Future Directions , 2013, Clinical Cancer Research.

[24]  J. Casal,et al.  Akt2 interacts with Snail1 in the E-cadherin promoter , 2012, Oncogene.

[25]  G. Kerr,et al.  Proximity ligation assays for isoform‐specific Akt activation in breast cancer identify activated Akt1 as a driver of progression , 2012, The Journal of pathology.

[26]  Qiaojia Huang,et al.  Akt2 Kinase Suppresses Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH)-mediated Apoptosis in Ovarian Cancer Cells via Phosphorylating GAPDH at Threonine 237 and Decreasing Its Nuclear Translocation* , 2011, The Journal of Biological Chemistry.

[27]  Sydney L. Stoops,et al.  Inhibition of Akt with small molecules and biologics: historical perspective and current status of the patent landscape , 2011, Expert opinion on therapeutic patents.

[28]  N. Hay,et al.  The effect Akt2 deletion on tumor development in Pten+/− mice , 2011, Oncogene.

[29]  A. Fusco,et al.  Group I p21-activated kinases regulate thyroid cancer cell migration and are overexpressed and activated in thyroid cancer invasion. , 2010, Endocrine-related cancer.

[30]  R. Steinman,et al.  Microbial Stimulation Fully Differentiates Monocytes to DC-SIGN/CD209+ Dendritic Cells for Immune T Cell Areas , 2010, Cell.

[31]  R. Figlin,et al.  Akt inhibitors in clinical development for the treatment of cancer , 2010, Expert opinion on investigational drugs.

[32]  W. Muller,et al.  Distinct biological roles for the akt family in mammary tumor progression. , 2010, Cancer research.

[33]  M. Willingham,et al.  Growth activation alone is not sufficient to cause metastatic thyroid cancer in a mouse model of follicular thyroid carcinoma. , 2010, Endocrinology.

[34]  T. McGraw,et al.  The Akt kinases: Isoform specificity in metabolism and cancer , 2009, Cell cycle.

[35]  G. Mills,et al.  Akt1 and akt2 play distinct roles in the initiation and metastatic phases of mammary tumor progression. , 2009, Cancer research.

[36]  Harold Varmus,et al.  Seeding and Propagation of Untransformed Mouse Mammary Cells in the Lung , 2008, Science.

[37]  M. Carrington,et al.  The evolutionary history of the CD209 (DC-SIGN) family in humans and non-human primates , 2008, Genes and Immunity.

[38]  Ken Jacobson,et al.  Distribution and lateral mobility of DC-SIGN on immature dendritic cells–implications for pathogen uptake , 2008, Journal of Cell Science.

[39]  Lewis C. Cantley,et al.  AKT/PKB Signaling: Navigating Downstream , 2007, Cell.

[40]  M. Saji,et al.  AKT in thyroid tumorigenesis and progression. , 2007, Endocrinology.

[41]  Huiling He,et al.  Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion , 2007, Proceedings of the National Academy of Sciences.

[42]  M. Saji,et al.  Molecular mechanisms involved in differentiated thyroid cancer invasion and metastasis , 2007, Current opinion in oncology.

[43]  K. Slawin,et al.  An essential role for Akt1 in dendritic cell function and tumor immunotherapy , 2006, Nature Biotechnology.

[44]  Brian A. Hemmings,et al.  Only Akt1 Is Required for Proliferation, while Akt2 Promotes Cell Cycle Exit through p21 Binding , 2006, Molecular and Cellular Biology.

[45]  Li Hao,et al.  DC-SIGN and immunoregulation. , 2006, Cellular & molecular immunology.

[46]  Hong Liu,et al.  Mechanism of Akt1 inhibition of breast cancer cell invasion reveals a protumorigenic role for TSC2. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Sheue-yann Cheng,et al.  Activation of phosphatidylinositol 3-kinase signaling by a mutant thyroid hormone beta receptor. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[48]  J. Brugge,et al.  Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial–mesenchymal transition , 2005, The Journal of cell biology.

[49]  Caroline Kim,et al.  AKT activation promotes metastasis in a mouse model of follicular thyroid carcinoma. , 2005, Endocrinology.

[50]  J. Frahm,et al.  Essential role of protein kinase Bγ (PKBγ/Akt3) in postnatal brain development but not in glucose homeostasis , 2005, Development.

[51]  V. Vasko,et al.  Akt1 contains a functional leucine-rich nuclear export sequence. , 2005, Biochemical and biophysical research communications.

[52]  T. Ludwig,et al.  Role for Akt3/Protein Kinase Bγ in Attainment of Normal Brain Size , 2005, Molecular and Cellular Biology.

[53]  Robert D Cardiff,et al.  Activation of Akt-1 (PKB-alpha) can accelerate ErbB-2-mediated mammary tumorigenesis but suppresses tumor invasion. , 2004, Cancer research.

[54]  V. Vasko,et al.  Akt activation and localisation correlate with tumour invasion and oncogene expression in thyroid cancer , 2004, Journal of Medical Genetics.

[55]  J. Stock,et al.  Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB beta. , 2003, The Journal of clinical investigation.

[56]  M. Willingham,et al.  Mice with a mutation in the thyroid hormone receptor beta gene spontaneously develop thyroid carcinoma: a mouse model of thyroid carcinogenesis. , 2002, Thyroid : official journal of the American Thyroid Association.

[57]  R. Doms,et al.  Expression of DC-SIGN by Dendritic Cells of Intestinal and Genital Mucosae in Humans and Rhesus Macaques , 2002, Journal of Virology.

[58]  M. Willingham,et al.  A targeted dominant negative mutation of the thyroid hormone α1 receptor causes increased mortality, infertility, and dwarfism in mice , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[59]  M. Birnbaum,et al.  Akt1/PKBα Is Required for Normal Growth but Dispensable for Maintenance of Glucose Homeostasis in Mice* , 2001, The Journal of Biological Chemistry.

[60]  I. Roninson,et al.  Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. , 2001, Genes & development.

[61]  M. Saji,et al.  Overexpression and overactivation of Akt in thyroid carcinoma. , 2001, Cancer research.

[62]  K. Kaestner,et al.  Insulin Resistance and a Diabetes Mellitus-Like Syndrome in Mice Lacking the Protein Kinase Akt2 (PKBβ) , 2001 .

[63]  M. Saji,et al.  Regulation of FRTL-5 thyroid cell growth by phosphatidylinositol (OH) 3 kinase-dependent Akt-mediated signaling. , 2001, Thyroid : official journal of the American Thyroid Association.

[64]  P. Pandolfi,et al.  Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse , 2001, Nature Genetics.

[65]  M. Willingham,et al.  Mice with a targeted mutation in the thyroid hormone beta receptor gene exhibit impaired growth and resistance to thyroid hormone. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[66]  J. Dumont,et al.  Phosphatidylinositol 3-kinase, protein kinase B and ribosomal S6 kinases in the stimulation of thyroid epithelial cell proliferation by cAMP and growth factors in the presence of insulin. , 2000, The Biochemical journal.

[67]  D. Jarjoura,et al.  Akt deficiency delays tumor progression , vascular invasion , and distant metastases in a murine model of thyroid cancer , 2011 .

[68]  S. Naber,et al.  Akt1 ablation inhibits, whereas Akt2 ablation accelerates, the development of mammary adenocarcinomas in mouse mammary tumor virus (MMTV)-ErbB2/neu and MMTV-polyoma middle T transgenic mice. , 2007, Cancer research.

[69]  Ximing J. Yang,et al.  The deficiency of Akt1 is sufficient to suppress tumor development in Pten+/- mice. , 2006, Genes & development.

[70]  T. Ludwig,et al.  Role for Akt3/protein kinase Bgamma in attainment of normal brain size. , 2005, Molecular and cellular biology.

[71]  H. Seo,et al.  Thyroid hormone induces rapid activation of Akt/protein kinase B-mammalian target of rapamycin-p70S6K cascade through phosphatidylinositol 3-kinase in human fibroblasts. , 2005, Molecular endocrinology.

[72]  K. Kaestner,et al.  Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). , 2001, Science.

[73]  [Carcinoma]. , 1955, Die Medizinische.