Stereoselective Primary and Secondary Nucleation Events in Multicomponent Seeded Supramolecular Polymerization.

Bioinspired, kinetically controlled seeded growth has been recently shown to provide length, dispersity, and sequence control on the primary structure of dynamic supramolecular polymers. However, command over the molecular organization at all hierarchical levels for the modulation of higher order structures of supramolecular polymers remains a formidable task. In this context, a surface-catalyzed secondary nucleation process, which plays an important role in the autocatalytic generation of amyloid fibrils and also during the chiral crystallization of small monomers, offers exciting possibilities for topology control in synthetic macromolecular systems by introducing secondary growth pathways compared to the usual primary nucleation-elongation process. However, mechanistic insights into the molecular determinants and driving forces for the secondary nucleation event in synthetic systems are not yet realized. Herein, we attempt to fill this dearth by showing an unprecedented molecular chirality control on the primary and secondary nucleation events in seed-induced supramolecular polymerization. Comprehensive kinetic experiments using in situ spectroscopic probing of the temporal changes of the monomer organization during the growth process provide a unique study to characterize the primary and secondary nucleation events in a supramolecular polymerization process. Kinetic analyses along with various microscopic studies further reveal the remarkable effect of stereoselective nucleation and seeding events on the (micro)structural aspects of the resulting multicomponent supramolecular polymers.

[1]  Munenori Numata,et al.  Directional Supramolecular Polymerization in a Dynamic Microsolution: A Linearly Moving Polymer's End Striking Monomers. , 2021, Journal of the American Chemical Society.

[2]  S. Perrier,et al.  Molecular Self-Assembly and Supramolecular Chemistry of Cyclic Peptides , 2021, Chemical reviews.

[3]  Gustavo Fernández,et al.  Unraveling Halogen Effects in Supramolecular Polymerization. , 2021, Journal of the American Chemical Society.

[4]  R. Harniman,et al.  Dendritic Micelles with Controlled Branching and Sensor Applications. , 2021, Journal of the American Chemical Society.

[5]  K. Tamaki,et al.  Diarylethene-Powered Light-Induced Folding of Supramolecular Polymers. , 2021, Journal of the American Chemical Society.

[6]  Jaehyeon Park,et al.  Dynamic Transformation of a Ag+-Coordinated Supramolecular Nanostructure from a 1D Needle to a 1D Helical Tube via a 2D Ribbon Accompanying the Conversion of Complex Structures. , 2021, Journal of the American Chemical Society.

[7]  S. Yamaguchi,et al.  Dual Trapping of a Metastable Planarized Triarylborane π-System Based on Folding and Lewis Acid-Base Complexation for Seeded Polymerization. , 2021, Journal of the American Chemical Society.

[8]  F. Ricci,et al.  Reorganization of self-assembled DNA-based polymers using orthogonally addressable building blocks. , 2021, Angewandte Chemie.

[9]  S. Perrier,et al.  Efficient Artificial Light-Harvesting System Based on Supramolecular Peptide Nanotubes in Water , 2020, Journal of the American Chemical Society.

[10]  L. De Cola,et al.  Solvent‐Driven Supramolecular Wrapping of Self‐Assembled Structures , 2020, Angewandte Chemie.

[11]  E. Ortí,et al.  Dual-Mode Chiral Self-Assembly of Cone-Shaped Subphthalocyanine Aromatics. , 2020, Journal of the American Chemical Society.

[12]  I. Manners,et al.  Functional nanoparticles through π-conjugated polymer self-assembly , 2020, Nature Reviews Materials.

[13]  Tobias Schnitzer,et al.  Synthesis of Complex Molecular Systems—The Foreseen Role of Organic Chemists , 2020, ACS central science.

[14]  Sarit S. Agasti,et al.  Transient dormant monomer states for supramolecular polymers with low dispersity , 2020, Nature Communications.

[15]  Subi J. George,et al.  Circularly Polarized Luminescence from Bischromophoric Cyanostilbene‐Derived Homochiral Nanostructures in Solution , 2020, ChemNanoMat.

[16]  Guillermo Monreal Santiago,et al.  Caught in the Act: Mechanistic Insight into Supramolecular Polymerization-Driven Self-Replication from Real-Time Visualization , 2020, Journal of the American Chemical Society.

[17]  S. George,et al.  Stereoselective Seed Induced Living Supramolecular Polymerization. , 2020, Angewandte Chemie.

[18]  E. W. Meijer,et al.  Supramolecular double-stranded Archimedean spirals and concentric toroids , 2020, Nature Communications.

[19]  L. Pesce,et al.  Self-assembled poly-catenanes from supramolecular toroidal building blocks , 2020, Nature.

[20]  E. Ortí,et al.  N-Annulated Perylene Bisimides to Bias the Differentiation of Metastable Supramolecular Assemblies into J- and H-Aggregates. , 2020, Angewandte Chemie.

[21]  Subi J. George,et al.  ATP-Driven Synthetic Supramolecular Assemblies: From ATP as a Template to Fuel. , 2020, Angewandte Chemie.

[22]  Sarit S. Agasti,et al.  Cooperative Supramolecular Block Copolymerization for the Synthesis of Functional Axial Organic Heterostructures. , 2020, Journal of the American Chemical Society.

[23]  E. W. Meijer,et al.  Supramolecular Polymerization: A Conceptual Expansion for Innovative Materials , 2020 .

[24]  E. W. Meijer,et al.  How to Determine the Role of an Additive on the Length of Supramolecular Polymers? , 2020, Organic Materials.

[25]  Subi J. George,et al.  Self-Sorted, Random and Block Supramolecular Co-polymers via Sequence Controlled, Multicomponent Self-Assembly. , 2020, Journal of the American Chemical Society.

[26]  T. Hermans,et al.  Re-Programming Hydrogel Properties using a Fuel-driven Reaction Cycle. , 2020, Journal of the American Chemical Society.

[27]  E. W. Meijer,et al.  Supramolecular Polymers – we've Come Full Circle , 2020 .

[28]  T. Aida On Supramolecular Polymerization: Interview with Takuzo Aida , 2019, Advanced materials.

[29]  F. Würthner,et al.  Supramolecular polymerization through kinetic pathway control and living chain growth , 2019, Nature Reviews Chemistry.

[30]  Myongsoo Lee,et al.  Impact of Positional Isomerism on Pathway Complexity in Aqueous Media , 2019, Angewandte Chemie.

[31]  F. Würthner,et al.  Impact of Molecular Shape on Supramolecular Copolymer Synthesis in Seeded Living Polymerization of Perylene Bisimides , 2019 .

[32]  Johannes C. Brendel,et al.  Dual self-assembly of supramolecular peptide nanotubes to provide stabilisation in water , 2019, Nature Communications.

[33]  I. Voets,et al.  Noncovalent Synthesis of Self-assembled Nanotubes through Decoupled Hierarchical Cooperative Processes. , 2019, Journal of the American Chemical Society.

[34]  Subi J. George,et al.  Towards Precision and Adaptive Supramolecular Materials , 2019, Advances in the Chemistry and Physics of Materials.

[35]  M. Maaloum,et al.  Temperature Control of Sequential Nucleation-Growth Mechanisms in Hierarchical Supramolecular Polymers. , 2019, Chemistry.

[36]  N. Shimizu,et al.  Topological Impact on the Kinetic Stability of Supramolecular Polymers. , 2019, Journal of the American Chemical Society.

[37]  F. Würthner,et al.  Supramolecular Block Copolymers by Seeded Living Polymerization of Perylene Bisimides. , 2019, Journal of the American Chemical Society.

[38]  Jonas Matern,et al.  Revising Complex Supramolecular Polymerization under Kinetic and Thermodynamic Control , 2019, Angewandte Chemie.

[39]  Y. Hijikata,et al.  Seeded Polymerization of an Amide-Functionalized Diketopyrrolopyrrole Dye in Aqueous Media. , 2019, Chemistry.

[40]  E. W. Meijer,et al.  The construction of supramolecular systems , 2019, Science.

[41]  E. W. Meijer,et al.  Future of Supramolecular Copolymers Unveiled by Reflecting on Covalent Copolymerization. , 2019, Journal of the American Chemical Society.

[42]  L. Sánchez,et al.  Unraveling Concomitant Packing Polymorphism in Metallosupramolecular Polymers. , 2019, Journal of the American Chemical Society.

[43]  Ankit Jain,et al.  Chemical fuel-driven living and transient supramolecular polymerization , 2019, Nature Communications.

[44]  L. Sánchez,et al.  Kinetic Traps to Activate Stereomutation in Supramolecular Polymers. , 2018, Angewandte Chemie.

[45]  M. Stich,et al.  Oscillations, travelling fronts and patterns in a supramolecular system , 2018, Nature Nanotechnology.

[46]  Y. Kitamoto,et al.  Light-regulated crystal growth of π-conjugated luminophores in an azobenzene matrix , 2018, Communications Chemistry.

[47]  G. Pavan,et al.  A Block Supramolecular Polymer and Its Kinetically Enhanced Stability. , 2018, Journal of the American Chemical Society.

[48]  P. Besenius,et al.  Surface-Assisted Self-Assembly of a Hydrogel by Proton Diffusion. , 2018, Angewandte Chemie.

[49]  L. Sánchez,et al.  Pathway Complexity Versus Hierarchical Self-Assembly in N-Annulated Perylenes: Structural Effects in Seeded Supramolecular Polymerization. , 2018, Angewandte Chemie.

[50]  Karteek K. Bejagam,et al.  Biomimetic temporal self-assembly via fuel-driven controlled supramolecular polymerization , 2018, Nature Communications.

[51]  S. Yamaguchi,et al.  Seeded Polymerization through the Interplay of Folding and Aggregation of an Amino-Acid-based Diamide. , 2018, Angewandte Chemie.

[52]  Shikha Dhiman,et al.  Temporally Controlled Supramolecular Polymerization , 2018, Bulletin of the Chemical Society of Japan.

[53]  P. Besenius,et al.  Kinetically Controlled Stepwise Self-Assembly of AuI-Metallopeptides in Water. , 2018, Journal of the American Chemical Society.

[54]  L. Sánchez,et al.  Tunable Energy Landscapes to Control Pathway Complexity in Self-Assembled N-Heterotriangulenes: Living and Seeded Supramolecular Polymerization. , 2018, Small.

[55]  K. G. Thomas,et al.  Enantioselective Light Harvesting with Perylenediimide Guests on Self-Assembled Chiral Naphthalenediimide Nanofibers. , 2017, Angewandte Chemie.

[56]  S. George,et al.  Visualization of Stereoselective Supramolecular Polymers by Chirality-Controlled Energy Transfer. , 2017, Angewandte Chemie.

[57]  N. Shimizu,et al.  Light-induced unfolding and refolding of supramolecular polymer nanofibres , 2017, Nature Communications.

[58]  Shu Seki,et al.  Control over differentiation of a metastable supramolecular assembly in one and two dimensions. , 2017, Nature chemistry.

[59]  R. Finke,et al.  Sigmoidal Nucleation and Growth Curves Across Nature Fit by the Finke–Watzky Model of Slow Continuous Nucleation and Autocatalytic Growth: Explicit Formulas for the Lag and Growth Times Plus Other Key Insights , 2017 .

[60]  S. Yagai,et al.  Photoregulated Living Supramolecular Polymerization Established by Combining Energy Landscapes of Photoisomerization and Nucleation-Elongation Processes. , 2016, Journal of the American Chemical Society.

[61]  R. Harniman,et al.  Hierarchical Assembly of Cylindrical Block Comicelles Mediated by Spatially Confined Hydrogen-Bonding Interactions. , 2016, Journal of the American Chemical Society.

[62]  L. Sánchez,et al.  Seeded Supramolecular Polymerization in a Three-Domain Self-Assembly of an N-Annulated Perylenetetracarboxamide. , 2016, Chemistry.

[63]  Krzysztof Matyjaszewski,et al.  From precision polymers to complex materials and systems , 2016 .

[64]  Michele Vendruscolo,et al.  Molecular mechanisms of protein aggregation from global fitting of kinetic models , 2016, Nature Protocols.

[65]  F. Würthner,et al.  Impact of Alkyl Spacer Length on Aggregation Pathways in Kinetically Controlled Supramolecular Polymerization. , 2016, Journal of the American Chemical Society.

[66]  Matteo Mauro,et al.  Controlling and imaging biomimetic self-assembly. , 2016, Nature chemistry.

[67]  J. Anwar,et al.  Secondary Crystal Nucleation: Nuclei Breeding Factory Uncovered. , 2015, Angewandte Chemie.

[68]  Michael T. Colvin,et al.  N-Terminal Extensions Retard Aβ42 Fibril Formation but Allow Cross-Seeding and Coaggregation with Aβ42. , 2015, Journal of the American Chemical Society.

[69]  Karteek K. Bejagam,et al.  Autoresolution of Segregated and Mixed p-n Stacks by Stereoselective Supramolecular Polymerization in Solution. , 2015, Angewandte Chemie.

[70]  T. Fukushima,et al.  Helix Sense-Selective Supramolecular Polymerization Seeded by a One-Handed Helical Polymeric Assembly. , 2015, Journal of the American Chemical Society.

[71]  Ayyappanpillai Ajayaghosh,et al.  Living supramolecular polymerization , 2015, Science.

[72]  Tom F A de Greef,et al.  Programmable Supramolecular Polymerizations. , 2015, Angewandte Chemie.

[73]  Van Duc Nguyen,et al.  Controlling the Structure and Length of Self-Synthesizing Supramolecular Polymers through Nucleated Growth and Disassembly. , 2015, Angewandte Chemie.

[74]  F. Würthner,et al.  Supramolecular block copolymers by kinetically controlled co-self-assembly of planar and core-twisted perylene bisimides , 2015, Nature Communications.

[75]  Masayuki Takeuchi,et al.  Mechanism of self-assembly process and seeded supramolecular polymerization of perylene bisimide organogelator. , 2015, Journal of the American Chemical Society.

[76]  R. Harniman,et al.  Branched micelles by living crystallization-driven block copolymer self-assembly under kinetic control. , 2015, Journal of the American Chemical Society.

[77]  Tadashi Mori,et al.  A rational strategy for the realization of chain-growth supramolecular polymerization , 2015, Science.

[78]  Melinda L. Jue,et al.  Kinetic control over pathway complexity in supramolecular polymerization through modulating the energy landscape by rational molecular design. , 2014, Angewandte Chemie.

[79]  Masayuki Takeuchi,et al.  Living supramolecular polymerization realized through a biomimetic approach , 2014, Nature Chemistry.

[80]  E. W. Meijer,et al.  Pathway Complexity in π-Conjugated Materials , 2014 .

[81]  Michele Vendruscolo,et al.  Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism , 2013, Proceedings of the National Academy of Sciences.

[82]  S. Balasubramanian,et al.  What molecular features govern the mechanism of supramolecular polymerization? , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[83]  T. Ohba,et al.  Control over hierarchy levels in the self-assembly of stackable nanotoroids. , 2012, Journal of the American Chemical Society.

[84]  E. W. Meijer,et al.  Functional Supramolecular Polymers , 2012, Science.

[85]  E. W. Meijer,et al.  Pathway complexity in supramolecular polymerization , 2012, Nature.

[86]  T. Fukushima,et al.  Supramolecular Linear Heterojunction Composed of Graphite-Like Semiconducting Nanotubular Segments , 2011, Science.

[87]  I. Manners,et al.  Monodisperse cylindrical micelles by crystallization-driven living self-assembly. , 2010, Nature chemistry.

[88]  Stefan Matile,et al.  Core-substituted naphthalenediimides. , 2010, Chemical communications.

[89]  Tuomas P. J. Knowles,et al.  An Analytical Solution to the Kinetics of Breakable Filament Assembly , 2009, Science.

[90]  Adriano Aguzzi,et al.  Prions: protein aggregation and infectious diseases. , 2009, Physiological reviews.

[91]  Albert P H J Schenning,et al.  Supramolecular polymerization. , 2009, Chemical reviews.

[92]  E. W. Meijer,et al.  Materials science: Supramolecular polymers , 2008, Nature.

[93]  Mitchell A. Winnik,et al.  Cylindrical Block Copolymer Micelles and Co-Micelles of Controlled Length and Architecture , 2007, Science.

[94]  D. Kondepudi,et al.  Chiral autocatalysis, spontaneous symmetry breaking, and stochastic behavior. , 2001, Accounts of chemical research.

[95]  E. W. Meijer,et al.  Supramolecular Polymers , 2000 .

[96]  M Laurent,et al.  Prion diseases and the 'protein only' hypothesis: a theoretical dynamic study. , 1996, The Biochemical journal.

[97]  D. Kondepudi,et al.  Chiral Symmetry Breaking in Sodium Chlorate Crystallizaton , 1990, Science.

[98]  J. Griffith,et al.  Nature of the Scrapie Agent: Self-replication and Scrapie , 1967, Nature.