Kinetic square scheme in oxygen-redox battery electrodes

Kinetic formation of the peroxo-like O22− dimer is identified as the origin of a voltage hysteresis in oxygen-redox battery electrodes.

[1]  A. Yamada,et al.  Oxygen Redox Versus Oxygen Evolution in Aqueous Electrolytes: Critical Influence of Transition Metals , 2022, Advanced science.

[2]  A. Yamada,et al.  Square-Scheme Electrochemistry in Battery Electrodes , 2021, Accounts of Materials Research.

[3]  W. Tong,et al.  Coexistence of (O2)n- and Trapped Molecular O2 as the Oxidized Species in P2-Type Sodium 3d Layered Oxide and Stable Interface Enabled by Highly Fluorinated Electrolyte. , 2021, Journal of the American Chemical Society.

[4]  William E. Gent,et al.  Persistent and partially mobile oxygen vacancies in Li-rich layered oxides , 2021, Nature Energy.

[5]  M. Whittingham,et al.  Whither Mn Oxidation in Mn-Rich Alkali-Excess Cathodes? , 2021, ACS Energy Letters.

[6]  A. Yamada,et al.  Nonpolarizing oxygen-redox capacity without O-O dimerization in Na2Mn3O7 , 2021, Nature Communications.

[7]  Y. Meng,et al.  Could Irradiation Introduce Oxidized Oxygen Signals in Resonant Inelastic X-ray Scattering of Battery Electrodes? , 2021, The journal of physical chemistry letters.

[8]  P. Bruce,et al.  Redox Chemistry and the Role of Trapped Molecular O2 in Li-Rich Disordered Rocksalt Oxyfluoride Cathodes , 2020, Journal of the American Chemical Society.

[9]  P. Bruce,et al.  First-cycle voltage hysteresis in Li-rich 3d cathodes associated with molecular O2 trapped in the bulk , 2020, Nature Energy.

[10]  William E. Gent,et al.  Design Rules for High-Valent Redox in Intercalation Electrodes , 2020 .

[11]  D. Xia,et al.  O2-Type Li0.78[Li0.24Mn0.76]O2 Nanowires for High-Performance Lithium-Ion Battery Cathode. , 2020, Nano letters.

[12]  Xiulin Fan,et al.  Structure and Interface Design Enable Stable Li-Rich Cathode. , 2020, Journal of the American Chemical Society.

[13]  Arumugam Manthiram,et al.  A reflection on lithium-ion battery cathode chemistry , 2020, Nature Communications.

[14]  Sung Kwan Park,et al.  Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes , 2020, Nature Materials.

[15]  P. Bruce,et al.  Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes , 2019, Nature.

[16]  G. Crabtree The coming electric vehicle transformation , 2019, Science.

[17]  J. Tarascon,et al.  Probing the thermal effects of voltage hysteresis in anionic redox-based lithium-rich cathodes using isothermal calorimetry , 2019, Nature Energy.

[18]  X. Zeng,et al.  Unraveling Oxygen Evolution in Li-Rich Oxides: A Unified Modeling of the Intermediate Peroxo/Superoxo-like Dimers. , 2019, Journal of the American Chemical Society.

[19]  Xiao‐Qing Yang,et al.  Understanding the Low-Voltage Hysteresis of Anionic Redox in Na2Mn3O7 , 2019, Chemistry of Materials.

[20]  V. Dhanak,et al.  Stabilization of O–O Bonds by d0 Cations in Li4+xNi1–xWO6 (0 ≤ x ≤ 0.25) Rock Salt Oxides as the Origin of Large Voltage Hysteresis , 2019, Journal of the American Chemical Society.

[21]  M. Ben Yahia,et al.  Unified picture of anionic redox in Li/Na-ion batteries , 2019, Nature Materials.

[22]  Gerbrand Ceder,et al.  Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides , 2019, Nature Materials.

[23]  A. Yamada,et al.  Cobalt-Free O2-Type Lithium-Rich Layered Oxides , 2018 .

[24]  F. Pan,et al.  Spectroscopic Signature of Oxidized Oxygen States in Peroxides. , 2018, The journal of physical chemistry letters.

[25]  Jun Lu,et al.  30 Years of Lithium‐Ion Batteries , 2018, Advanced materials.

[26]  P. Adelhelm Editorial: The Energy Challenge, Batteries, and Why Simple Math Matters. , 2018, Angewandte Chemie.

[27]  M. Winter,et al.  Performance and cost of materials for lithium-based rechargeable automotive batteries , 2018 .

[28]  Jun Lu,et al.  Elucidating anionic oxygen activity in lithium-rich layered oxides , 2018, Nature Communications.

[29]  P. Bruce,et al.  Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2. , 2018, Nature chemistry.

[30]  Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes , 2017, Nature Communications.

[31]  Yong‐Sheng Hu,et al.  Structure-Induced Reversible Anionic Redox Activity in Na Layered Oxide Cathode , 2017 .

[32]  Kei Mitsuhara,et al.  Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries , 2016, Nature Communications.

[33]  Rahul Malik,et al.  The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. , 2016, Nature chemistry.

[34]  K. Edström,et al.  Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. , 2016, Nature chemistry.

[35]  D. A. D. Corte,et al.  Editors' Choice—Practical Assessment of Anionic Redox in Li-Rich Layered Oxide Cathodes: A Mixed Blessing for High Energy Li-Ion Batteries , 2016 .

[36]  J. Tarascon,et al.  Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries , 2015, Science.

[37]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[38]  K. Kubota,et al.  New O2/P2‐type Li‐Excess Layered Manganese Oxides as Promising Multi‐Functional Electrode Materials for Rechargeable Li/Na Batteries , 2014 .

[39]  Kevin G. Gallagher,et al.  Quantifying Hysteresis and Voltage Fade in xLi2MnO3●(1-x)LiMn0.5Ni0.5O2 Electrodes as a Function of Li2MnO3 Content , 2014 .

[40]  K Ramesha,et al.  Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. , 2013, Nature materials.

[41]  C. Delmas,et al.  Reversible Oxygen Participation to the Redox Processes Revealed for Li1.20Mn0.54Co0.13Ni0.13O2 , 2013 .

[42]  H. Ohashi,et al.  Ultrahigh resolution soft x-ray emission spectrometer at BL07LSU in SPring-8. , 2012, The Review of scientific instruments.

[43]  P. Fournier,et al.  Utility of the inverse partial fluorescence for electronic structure studies of battery materials , 2012, 1201.0828.

[44]  Miaofang Chi,et al.  Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study , 2011 .

[45]  Min Yu,et al.  Accurate and efficient algorithm for Bader charge integration. , 2010, The Journal of chemical physics.

[46]  K. Kang,et al.  Structural evolution of layered Li1.2Ni0.2Mn0.6O2 upon electrochemical cycling in a Li rechargeable battery , 2010 .

[47]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[48]  Edward Sanville,et al.  Improved grid‐based algorithm for Bader charge allocation , 2007, J. Comput. Chem..

[49]  Michael Holzapfel,et al.  Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. , 2006, Journal of the American Chemical Society.

[50]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[51]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[52]  Zhonghua Lu,et al.  Synthesis, Structure, and Electrochemical Behavior of Li [ Ni x Li1 / 3 − 2x / 3Mn2 / 3 − x / 3 ] O 2 , 2002 .

[53]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[54]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[55]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .