Optical trapping of gain-assisted plasmonic nano-shells: theorical study of the optical forces in a pumped regime below the emission threshold

We study theoretically the opto-mechanics of a metallic nano-shell with a gain-enriched dielectric core in stationary Optical Tweezers. In order to avoid the counterproductive effects of scattering forces we choose a two counter-propagating beams configuration. The application of an external pump enhances the plasmonic resonance of the nano-shell thus affecting the optical forces acting on the particle even at pump powers below the emission threshold. We show that the trapping strength can be largely improved without the necessity to increase the trapping beam power. We support the theoretical analysis with Brownian dynamics simulations that show how particle position locking is achieved at high gains in exended optical trapping potentials. Finally, for wavelengths blue-detuned with respect to the plasmon-enhanced resonance, we observe particle channeling by the standing wave antinodes due to gradient force reversal.

[1]  Giovanni Volpe,et al.  Optical Tweezers: Principles and Applications , 2016 .

[2]  Oto Brzobohatý,et al.  Three-Dimensional Optical Trapping of a Plasmonic Nanoparticle using Low Numerical Aperture Optical Tweezers , 2015, Scientific Reports.

[3]  R. Saija,et al.  Scaling of optical forces on Au–PEG core–shell nanoparticles , 2015 .

[4]  Giovanni Volpe,et al.  Optical trapping and manipulation of nanostructures. , 2013, Nature nanotechnology.

[5]  A. De Luca,et al.  Resonant Coupling and Gain Singularities in Metal/Dielectric Multishells: Quasi-Static Versus T-Matrix Calculations , 2019, The Journal of Physical Chemistry C.

[6]  M. Nieto-Vesperinas,et al.  Time-averaged total force on a dipolar sphere in an electromagnetic field. , 2000, Optics letters.

[7]  Alfons van Blaaderen,et al.  High trapping forces for high-refractive index particles trapped in dynamic arrays of counterpropagating optical tweezers. , 2008, Applied optics.

[8]  Juan José Sáenz,et al.  Scattering forces from the curl of the spin angular momentum of a light field. , 2009, Physical review letters.

[9]  M. Infusino,et al.  Gain-Assisted Optomechanical Position Locking of Metal/Dielectric Nanoshells in Optical Potentials , 2020 .

[10]  Alessandro Veltri,et al.  Optical response of a metallic nanoparticle immersed in a medium with optical gain , 2012 .

[11]  G. Volpe,et al.  Simulation of a Brownian particle in an optical trap , 2013 .

[12]  Pavel Zemánek,et al.  Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[13]  A. De Luca,et al.  Resonant Gain Singularities in 1D and 3D Metal/Dielectric Multilayered Nanostructures. , 2017, ACS nano.

[14]  P. G. Gucciardi,et al.  Femtonewton force sensing with optically trapped nanotubes. , 2008, Nano letters.

[15]  Philip H Jones,et al.  Photonic Torque Microscopy of the Nonconservative Force Field for Optically Trapped Silicon Nanowires. , 2016, Nano letters.

[16]  Halina Rubinsztein-Dunlop,et al.  Laser trapping of colloidal metal nanoparticles. , 2015, ACS nano.

[17]  Maria Grazia Donato,et al.  Optical tweezers and their applications , 2018, Journal of Quantitative Spectroscopy and Radiative Transfer.

[18]  R. Saija,et al.  Optical trapping and optical force positioning of two-dimensional materials. , 2018, Nanoscale.

[19]  M. Nieto-Vesperinas,et al.  Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[20]  Cheng-Wei Qiu,et al.  Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects , 2017, Light: Science & Applications.

[21]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[22]  Oto Brzobohatý,et al.  Optical Trapping, Optical Binding, and Rotational Dynamics of Silicon Nanowires in Counter-Propagating Beams. , 2018, Nano letters.

[23]  Pavel Zemánek,et al.  Optical trapping of Rayleigh particles using a Gaussian standing wave , 1998 .

[24]  Wolfgang Singer,et al.  Self-organized array of regularly spaced microbeads in a fiber-optical trap , 2003 .

[25]  R. Saija,et al.  Optical Trapping of Plasmonic Mesocapsules: Enhanced Optical Forces and SERS , 2017 .

[26]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[27]  M. Šiler,et al.  An optical nanotrap array movable over a milimetre range , 2006 .

[28]  M. Infusino,et al.  Loss-Mitigated Collective Resonances in Gain-Assisted Plasmonic Mesocapsules , 2014 .

[29]  Arkadi Chipouline,et al.  Multipolar, time-dynamical model for the loss compensation and lasing of a spherical plasmonic nanoparticle spaser immersed in an active gain medium , 2016, Scientific Reports.

[30]  Zijie Yan,et al.  Why single-beam optical tweezers trap gold nanowires in three dimensions. , 2013, ACS nano.

[31]  C D'Andrea,et al.  Optical trapping of silver nanoplatelets. , 2015, Optics express.

[32]  Tomáš Čižmár,et al.  A dual beam photonic crystal fiber trap for microscopic particles , 2008 .