Exome Chip Analysis Identifies Low-Frequency and Rare Variants in MRPL38 for White Matter Hyperintensities on Brain Magnetic Resonance Imaging
暂无分享,去创建一个
Nicholette D. Palmer | M. Fornage | A. Uitterlinden | D. Levy | I. Deary | E. Boerwinkle | C. DeCarli | V. Gudnason | A. Saykin | S. Risacher | C. Lewis | Qiong Yang | S. Kardia | M. Bastin | B. Mazoyer | B. Psaty | R. Bryan | K. Nho | W. Niessen | J. Rotter | F. Hsu | J. Maldjian | M. van Buchem | J. Starr | S. Sidney | D. Becker | K. Rice | C. V. van Duijn | P. Maillard | R. Schmidt | H. Schmidt | J. Wardlaw | H. Grabe | G. Homuth | A. Teumer | M. Vernooij | M. Ikram | A. Beiser | N. Royle | M. Habes | K. Wittfeld | J. Bis | X. Jian | Jennifer A. Smith | Wei Zhao | G. Eiriksdottir | L. Launer | S. Heckbert | A. DeStefano | S. Seshadri | J. Divers | L. Yanek | S. Hagenaars | N. Palmer | P. Schreiner | S. Turner | D. Bowden | B. Freedman | R. Mathias | M. Nauck | Hieab H. H. Adams | G. Chauhan | C. Satizabal | P. Nyquist | T. Mosley | S. Debette | M. Cushman | S. Sigurdsson | W. Longstreth | A. Mishra | Bettina von Sarnowski | E. Hofer | R. Gottesman | S. Langner | Shuo Li | B. Windham | Y. Saba | Maria del C. Valdés-Hernández | B. von Sarnowski | A. Smith | S. Turner | A. Uitterlinden | Wei Zhao | C. V. van Duijn | B. Psaty | A. Destefano | D. Levy | H. Adams | R. Schmidt | Wei Zhao
[1] M. Fornage,et al. Whole genome sequence analyses of brain imaging measures in the Framingham Study , 2018, Neurology.
[2] Min A. Jhun,et al. Multiethnic Exome-Wide Association Study of Subclinical Atherosclerosis , 2016, Circulation. Cardiovascular genetics.
[3] M. Filippi,et al. Carotid atherosclerosis, silent ischemic brain damage and brain atrophy: A systematic review and meta-analysis. , 2016, International journal of cardiology.
[4] M. Feolo,et al. Rapid evaluation of phenotypes, SNPs and results through the dbGaP CHARGE Summary Results site , 2016, Nature Genetics.
[5] Jonathan P. Beauchamp,et al. Genetic variants associated with subjective well-being, depressive symptoms and neuroticism identified through genome-wide analyses , 2016, Nature Genetics.
[6] Christos Davatzikos,et al. White matter hyperintensities and imaging patterns of brain ageing in the general population. , 2016, Brain : a journal of neurology.
[7] F. Cunningham,et al. The Ensembl Variant Effect Predictor , 2016, bioRxiv.
[8] Kaitlin M. Fitzpatrick,et al. Genome-wide meta-analysis of cerebral white matter hyperintensities in patients with stroke , 2016, Neurology.
[9] K. Arai,et al. Astrocytes Promote Oligodendrogenesis after White Matter Damage via Brain-Derived Neurotrophic Factor , 2015, The Journal of Neuroscience.
[10] J. Marrugat,et al. Association Between Coronary Artery Disease Genetic Variants and Subclinical Atherosclerosis: An Association Study and Meta-analysis. , 2015, Revista espanola de cardiologia.
[11] J. Marrugat,et al. Asociación entre variantes genéticas de enfermedad coronaria y aterosclerosis subclínica: estudio de asociación y metanálisis , 2015 .
[12] Lorna M. Lopez,et al. Multiethnic Genome-Wide Association Study of Cerebral White Matter Hyperintensities on MRI , 2015, Circulation. Cardiovascular genetics.
[13] Joanna M. Wardlaw,et al. Genes From a Translational Analysis Support a Multifactorial Nature of White Matter Hyperintensities , 2015, Stroke.
[14] Kaitlin M. Fitzpatrick,et al. Genetic Architecture of White Matter Hyperintensities Differs in Hypertensive and Nonhypertensive Ischemic Stroke , 2015, Stroke.
[15] C. Brayne,et al. Oxidative Glial Cell Damage Associated with White Matter Lesions in the Aging Human Brain , 2014, Brain pathology.
[16] Alan Brown,et al. Structure of the large ribosomal subunit from human mitochondria , 2014, Science.
[17] J. Shendure,et al. A general framework for estimating the relative pathogenicity of human genetic variants , 2014, Nature Genetics.
[18] Chu-Chung Huang,et al. Effect of BDNF Val66Met polymorphism on regional white matter hyperintensities and cognitive function in elderly males without dementia , 2014, Psychoneuroendocrinology.
[19] E. Boerwinkle,et al. dbNSFP v2.0: A Database of Human Non‐synonymous SNVs and Their Functional Predictions and Annotations , 2013, Human mutation.
[20] Eric Boerwinkle,et al. Best Practices and Joint Calling of the HumanExome BeadChip: The CHARGE Consortium , 2013, PloS one.
[21] A. Schäffer,et al. The BEACH Is Hot: A LYST of Emerging Roles for BEACH‐Domain Containing Proteins in Human Disease , 2013, Traffic.
[22] Kaitlin M. Fitzpatrick,et al. 17q25 Locus Is Associated With White Matter Hyperintensity Volume in Ischemic Stroke, But Not With Lacunar Stroke Status , 2013, Stroke.
[23] K. Kohara,et al. Association of Chr17q25 with cerebral white matter hyperintensities and cognitive impairment: the J‐SHIPP study , 2013, European journal of neurology.
[24] Ellen T. Gelfand,et al. The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.
[25] J. Danesh,et al. Large-scale association analysis identifies new risk loci for coronary artery disease , 2013 .
[26] Benjamin S Aribisala,et al. Close Correlation between Quantitative and Qualitative Assessments of White Matter Lesions , 2012, Neuroepidemiology.
[27] Eurie L. Hong,et al. Annotation of functional variation in personal genomes using RegulomeDB , 2012, Genome research.
[28] H. Lassmann,et al. NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury , 2012 .
[29] Jean-Baptiste Cazier,et al. Large Scale Association Analysis Identifies Three Susceptibility Loci for Coronary Artery Disease , 2011, PloS one.
[30] Benjamin F. J. Verhaaren,et al. Replication Study of Chr17q25 With Cerebral White Matter Lesion Volume , 2011, Stroke.
[31] M. Fornage,et al. Genome‐wide association studies of cerebral white matter lesion burden , 2011, Annals of neurology.
[32] Thomas W. Mühleisen,et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease , 2011, Nature Genetics.
[33] H. Markus,et al. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis , 2010, BMJ : British Medical Journal.
[34] R. Rodriguiz,et al. Reduced Cortical BDNF Expression and Aberrant Memory in Carf Knock-Out Mice , 2010, The Journal of Neuroscience.
[35] D. Goldstein,et al. Uncovering the roles of rare variants in common disease through whole-genome sequencing , 2010, Nature Reviews Genetics.
[36] P. Bork,et al. A method and server for predicting damaging missense mutations , 2010, Nature Methods.
[37] C. Jack,et al. Blood Pressure and White-Matter Disease Progression in a Biethnic Cohort: Atherosclerosis Risk in Communities (ARIC) Study , 2010, Stroke.
[38] Alberto Piazza,et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants , 2009, Nature Genetics.
[39] K. Lunetta,et al. Methods in Genetics and Clinical Interpretation Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Design of Prospective Meta-Analyses of Genome-Wide Association Studies From 5 Cohorts , 2010 .
[40] W. Bodmer,et al. Common and rare variants in multifactorial susceptibility to common diseases , 2008, Nature Genetics.
[41] E. Kremmer,et al. Mammalian WDR12 is a novel member of the Pes1–Bop1 complex and is required for ribosome biogenesis and cell proliferation , 2005, The Journal of cell biology.
[42] Lenore J Launer,et al. Epidemiology of White Matter Lesions , 2004, Topics in magnetic resonance imaging : TMRI.
[43] Norman J Beauchamp,et al. White Matter Hyperintensity on Cranial Magnetic Resonance Imaging: A Predictor of Stroke , 2004, Stroke.
[44] Charles DeCarli,et al. Genetic Variation in White Matter Hyperintensity Volume in the Framingham Study , 2004, Stroke.
[45] Haipeng Cheng,et al. Identification and characterization of NBEAL1, a novel human neurobeachin-like 1 protein gene from fetal brain, which is up regulated in glioma. , 2004, Brain research. Molecular brain research.
[46] M. Fornage,et al. Heritability of Leukoaraiosis in Hypertensive Sibships , 2004, Hypertension.
[47] Leonardo Pantoni,et al. Pathophysiology of Cerebral Small Vessels in Vascular Cognitive Impairment , 2003, International Psychogeriatrics.
[48] Michael E. Greenberg,et al. A Calcium-Responsive Transcription Factor, CaRF, that Regulates Neuronal Activity-Dependent Expression of BDNF , 2002, Neuron.
[49] B L Miller,et al. Evidence for genetic variance in white matter hyperintensity volume in normal elderly male twins. , 1998, Stroke.
[50] J. Garcìa,et al. Pathogenesis of leukoaraiosis: a review. , 1997, Stroke.
[51] L. Fried,et al. Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people. The Cardiovascular Health Study. , 1996, Stroke.
[52] A Hofman,et al. Cerebral white matter lesions and atherosclerosis in the Rotterdam Study , 1993, The Lancet.
[53] H. M. Cheng,et al. Raf kinase inhibitory protein (RKIP): functional pleiotropy in the mammalian brain. , 2014, Critical reviews in oncogenesis.
[54] Boer,et al. Genome-wide association studies of cerebral white matter lesion burden: the CHARGE Consortium , 2011 .
[55] S. Henikoff,et al. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm , 2009, Nature Protocols.
[56] E. V. van Dijk,et al. Frequency of white matter lesions and silent lacunar infarcts. , 2002, Journal of neural transmission. Supplementum.
[57] R. Horvath,et al. Newcastle University Eprints Date Deposited: 11 Mitochondria: Impaired Mitochondrial Translation in Human Disease , 2022 .