Nonlinearities enhance parameter convergence in output-feedback systems

While the parameter convergence properties of standard adaptive algorithms for linear systems are well established, there are no similar results on the parameter convergence of adaptive controllers for nonlinear systems which have gained popularity in recent years. In this paper we focus on a recently developed class of adaptive schemes for output-feedback nonlinear systems and show that parameter convergence is guaranteed if and only if an appropriately defined signal vector, which does not depend on closed-loop signals, is persistently exciting. Then we develop an analytic procedure which allows us, given a specific nonlinear system and a specific reference signal, to determine a priori whether or not this vector is persistently exciting (PE) and, hence, whether or not the parameter estimates will converge. In the process we show that the presence of nonlinearities usually reduces the sufficient richness (SR) requirements on the reference signals and hence enhances parameter convergence. This is the first result on the relationship between PE and SR for adaptive nonlinear control systems.

[1]  B. Anderson Exponential stability of linear equations arising in adaptive identification , 1977 .

[2]  Rolf Johansson,et al.  Parametric models of linear multivariable systems for adaptive control , 1982, 1982 21st IEEE Conference on Decision and Control.

[3]  B. Anderson,et al.  Input conditions for continuous-time adaptive system problems , 1983 .

[4]  Stephen P. Boyd,et al.  On parameter convergence in adaptive control , 1983 .

[5]  Stephen P. Boyd,et al.  Necessary and sufficient conditions for parameter convergence in adaptive control , 1986, Autom..

[6]  K. Narendra,et al.  Persistent excitation in adaptive systems , 1987 .

[7]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[8]  Iven M. Y. Mareels,et al.  Persistency of excitation criteria for linear, multivariable, time-varying systems , 1988, Math. Control. Signals Syst..

[9]  S. Sastry,et al.  Adaptive Control: Stability, Convergence and Robustness , 1989 .

[10]  Anuradha M. Annaswamy,et al.  Stable Adaptive Systems , 1989 .

[11]  Karl Johan Åström,et al.  Adaptive Control , 1989, Embedded Digital Control with Microcontrollers.

[12]  L. Ljung,et al.  Model structure identifiability and persistence of excitation , 1990, 29th IEEE Conference on Decision and Control.

[13]  Marc Bodson,et al.  Frequency domain conditions for parameter convergence in multivariable recursive identification , 1990, Autom..

[14]  I. Kanellakopoulos,et al.  Systematic Design of Adaptive Controllers for Feedback Linearizable Systems , 1991, 1991 American Control Conference.

[15]  S. Dasgupta,et al.  Persistent excitation in bilinear systems , 1991 .

[16]  Michel Gevers,et al.  Identifiability of Scalar Linearly Parametrized Polynomial Systems , 1991 .

[17]  L. Praly,et al.  Iterative designs of adaptive controllers for systems with nonlinear integrators , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[18]  R. Marino,et al.  Global adaptive output-feedback control of nonlinear systems , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[19]  Andrew R. Teel Error‐based adaptive non‐linear control and regions of feasibility , 1992 .

[20]  L. Praly,et al.  Adaptive nonlinear regulation: estimation from the Lyapunov equation , 1992 .

[21]  A. Annaswamy,et al.  Adaptive control of a class of nonlinear systems with a triangular structure , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[22]  R. Marino,et al.  Global adaptive output-feedback control of nonlinear systems. I. Linear parameterization , 1993, IEEE Trans. Autom. Control..

[23]  Riccardo Marino,et al.  Robust stabilization of feedback linearizable time-varying uncertain nonlinear systems, , 1993, Autom..

[24]  Miroslav Krstic,et al.  /spl kappa/-adaptive control of output-feedback nonlinear systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[25]  A. Annaswamy,et al.  Adaptive control of nonlinear systems with a triangular structure , 1994, IEEE Trans. Autom. Control..

[26]  I. Kanellakopoulos,et al.  Nonlinear design of adaptive controllers for linear systems , 1994, IEEE Trans. Autom. Control..

[27]  Petros A. Ioannou,et al.  Parameter convergence of a class of adaptive controllers , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[28]  Riccardo Marino,et al.  Nonlinear control design: geometric, adaptive and robust , 1995 .

[29]  I. Kanellakopoulos,et al.  Adaptive output-feedback nonlinear control with parameter convergence , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[30]  D. Mayne Nonlinear and Adaptive Control Design [Book Review] , 1996, IEEE Transactions on Automatic Control.

[31]  Petros A. Ioannou,et al.  Parameter convergence of a new class of adaptive controllers , 1996, IEEE Trans. Autom. Control..