QUANTITATIVE EVALUATIONS OF MECHANISMS OF RADIOFREQUENCY INTERACTIONS WITH BIOLOGICAL MOLECULES AND PROCESSES

The complexity of interactions of electromagnetic fields up to 1012 Hz with the ions, atoms, and molecules of biological systems has given rise to a large number of established and proposed biophysical mechanisms applicable over a wide range of time and distance scales, field amplitudes, frequencies, and waveforms. This review focuses on the physical principles that guide quantitative assessment of mechanisms applicable for exposures at or below the level of endogenous electric fields associated with development, wound healing, and excitation of muscles and the nervous system (generally, 1 to 102 V m−1), with emphasis on conditions where temperature increases are insignificant (←1 K). Experiment and theory demonstrate possible demodulation at membrane barriers for frequencies ≤10 MHz, but not at higher frequencies. Although signal levels somewhat below system noise can be detected, signal-to-noise ratios substantially less than 0.1 cannot be overcome by cooperativity, signal averaging, coherent detection, or by nonlinear dynamical systems. Sensory systems and possible effects on biological magnetite suggest paradigms for extreme sensitivity at lower frequencies, but there are no known radiofrequency (RF) analogues. At the molecular level, vibrational modes are so overdamped by water molecules that excitation of molecular modes below the far infrared cannot occur. Two RF mechanisms plausibly may affect biological matter under common exposure conditions. For frequencies below approximately 150 MHz, shifts in the rate of chemical reactions can be mediated by radical pairs and, at all frequencies, dielectric and resistive heating can raise temperature and increase the entropy of the affected biological system.

[1]  H. Schwan,et al.  Alignment of microscopic particles in electric fields and its biological implications. , 1985, Biophysical journal.

[2]  S. Johnston,et al.  Discovery of Pulsed OH Maser Emission Stimulated by a Pulsar , 2005, Science.

[3]  O. Schanne,et al.  Impedance measurements in biological cells , 1978 .

[4]  N. English,et al.  Denaturation of hen egg white lysozyme in electromagnetic fields: a molecular dynamics study. , 2007, The Journal of chemical physics.

[5]  Henrik Mouritsen,et al.  Magnetoreception and its use in bird navigation , 2005, Current Opinion in Neurobiology.

[6]  R. Berry,et al.  The origin of long-range attraction between hydrophobes in water. , 2007, Biophysical journal.

[7]  J. Obriot,et al.  Study of hydracids trapped in monatomic matrices. III. Pressure effects on the vibrational frequencies of the aggregates and evolution of the charge transfer , 1981 .

[8]  Maria A. Stuchly,et al.  Energy Deposition in a Model of Man: Frequency Effects , 1986, IEEE Transactions on Biomedical Engineering.

[9]  Microwave-induced cochlear microphonics in cats. , 1976, The Journal of microwave power.

[10]  P. Nunez,et al.  Electric fields of the brain , 1981 .

[11]  Frank S. Barnes,et al.  Biological and Medical Aspects of Electromagnetic Fields , 2006 .

[12]  J P Changeux,et al.  On the cooperativity of biological membranes. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[13]  John B. Hogenesch,et al.  A Heat-Sensitive TRP Channel Expressed in Keratinocytes , 2002, Science.

[14]  E. Adair,et al.  Behavioral and cognitive effects of microwave exposure , 2003, Bioelectromagnetics.

[15]  S. J. Webb,et al.  Laser-Raman spectroscopy of living cells , 1980 .

[16]  K. S. Krishnan,et al.  A New Type of Secondary Radiation , 1928, Nature.

[17]  C. Grissom Magnetic Field Effects in Biology: A Survey of Possible Mechanisms with Emphasis on Radical-Pair Recombination , 1995 .

[18]  B. Hess,et al.  Electric field induced conformational changes of bacteriorhodopsin in purple membrane films , 1986, European Biophysics Journal.

[19]  P. Kukura,et al.  Radio frequency magnetic field effects on a radical recombination reaction: a diagnostic test for the radical pair mechanism. , 2004, Journal of the American Chemical Society.

[20]  Nonlinear wave mechanisms in interactions between excitable tissue and electromagnetic fields. , 1982, Neurological research.

[21]  G. Clore,et al.  Concordance of residual dipolar couplings, backbone order parameters and crystallographic B-factors for a small alpha/beta protein: a unified picture of high probability, fast atomic motions in proteins. , 2006, Journal of molecular biology.

[22]  Walter Heiligenberg,et al.  Neural Nets in Electric Fish , 1991 .

[23]  W. Wiltschko,et al.  Magnetic orientation and magnetoreception in birds and other animals , 2005, Journal of Comparative Physiology A.

[24]  D. Haar,et al.  Statistical Physics , 1971, Nature.

[26]  A comment on the sensitivity of fish to low electric fields. , 1998, Biophysical journal.

[27]  Thorsten Ritz,et al.  Resonance effects indicate a radical-pair mechanism for avian magnetic compass , 2004, Nature.

[28]  J. De Lorge Operant behavior and colonic temperature of Macaca mulatta exposed to radio frequency fields at and above resonant frequencies. , 1984, Bioelectromagnetics.

[29]  J. Jefferys,et al.  Influence of electric fields on the excitability of granule cells in guinea‐pig hippocampal slices. , 1981, The Journal of physiology.

[30]  J. Phillips,et al.  Behavioral titration of a magnetic map coordinate , 2002, Journal of Comparative Physiology A.

[31]  Gregoire Nicolis,et al.  Stochastic resonance , 2007, Scholarpedia.

[32]  P. L. Sachdev,et al.  A Compendium on Nonlinear Ordinary Differential Equations , 1996 .

[33]  W. Wiltschko,et al.  Bird navigation: what type of information does the magnetite-based receptor provide? , 2006, Proceedings of the Royal Society B: Biological Sciences.

[34]  A. Pilla,et al.  A dynamical systems/Larmor precession model for weak magnetic field bioeffects: Ion binding and orientation of bound water molecules , 1997 .

[35]  H Maier,et al.  Electrorotation of colloidal particles and cells depends on surface charge. , 1997, Biophysical journal.

[36]  Q. Balzano,et al.  RF nonlinear interactions in living cells–I: Nonequilibrium thermodynamic theory , 2003, Bioelectromagnetics.

[37]  G. Schwarz A THEORY OF THE LOW-FREQUENCY DIELECTRIC DISPERSION OF COLLOIDAL PARTICLES IN ELECTROLYTE SOLUTION1,2 , 1962 .

[38]  J. Weaver,et al.  Molecular change signal‐to‐noise criteria for interpreting experiments involving exposure of biological systems to weakly interacting electromagnetic fields , 2005, Bioelectromagnetics.

[39]  James C. Weaver,et al.  Stochastic resonance at the single-cell level , 1997, Nature.

[40]  Sergey M. Bezrukov,et al.  Noise-induced enhancement of signal transduction across voltage-dependent ion channels , 1995, Nature.

[41]  David M. Leitner,et al.  Vibrational Energy Transfer and Heat Conduction in a Protein , 2003 .

[42]  Eduardo Sontag,et al.  Parameter estimation in models combining signal transduction and metabolic pathways: the dependent input approach. , 2006, Systems biology.

[43]  R. Astumian,et al.  Biological sensing of small field differences by magnetically sensitive chemical reactions , 2000, Nature.

[44]  Arthur A. Pilla,et al.  Mechanisms and Therapeutic Applications of Time-Varying and Static Magnetic Fields , 2018, Biological and Medical Aspects of Electromagnetic Fields.

[45]  J. Gehl,et al.  Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. , 2003, Acta physiologica Scandinavica.

[46]  Application of the heat equation to the calculation of temperature rises from pulsed microwave exposure. , 2003, Journal of theoretical biology.

[47]  P. Wolynes,et al.  Rate theories and puzzles of hemeprotein kinetics. , 1985, Science.

[48]  Thorsten Ritz,et al.  Magnetic compass orientation of migratory birds in the presence of a 1.315 MHz oscillating field , 2005, Naturwissenschaften.

[49]  R. Nuccitelli,et al.  Endogenous ionic currents and DC electric fields in multicellular animal tissues. , 1992, Bioelectromagnetics.

[50]  Alwyn C. Scott,et al.  Davydov's soliton revisited : self-trapping of vibrational energy in protein , 1990 .

[51]  William F. Pickard,et al.  Radio-frequency rectification in electrogenic and nonelectrogenic cells ofChara andNitella , 1982, The Journal of Membrane Biology.

[52]  R. Astumian,et al.  Nonlinear effect of an oscillating electric field on membrane proteins , 1989 .

[53]  Joe A. Elder 13 - Thermal, Cumulative, and Life Span Effects and Cancer in Mammals Exposed to Radiofrequency Radiation , 1994 .

[54]  R. Astumian,et al.  Theoretical limits on the threshold for the response of long cells to weak extremely low frequency electric fields due to ionic and molecular flux rectification. , 1998, Biophysical journal.

[55]  G. D'Inzeo,et al.  Myoglobin as a Case Study for Molecular Simulations in the Presence of a Microwave Electromagnetic Field , 2006, 2006 IEEE MTT-S International Microwave Symposium Digest.

[56]  F. Barnes,et al.  Handbook of biological effects of electromagnetic fields , 2007 .

[57]  R. Galamboš,et al.  Cochlear microphonics generated by microwave pulses. , 1975, The Journal of microwave power.

[58]  Thorsten Ritz,et al.  Anisotropic recombination of an immobilized photoinduced radical pair in a 50-μT magnetic field: a model avian photomagnetoreceptor , 2003 .

[59]  S F Cleary,et al.  Absorbed energy distribution from radiofrequency electromagnetic radiation in a mammalian cell model: effect of membrane-bound water. , 1995, Bioelectromagnetics.

[60]  R. Fields The shark's electric sense. , 2007, Scientific American.

[61]  Roland Glaser,et al.  THERMAL MECHANISMS OF INTERACTION OF RADIOFREQUENCY ENERGY WITH BIOLOGICAL SYSTEMS WITH RELEVANCE TO EXPOSURE GUIDELINES , 2007, Health physics.

[62]  Bruce Hocking,et al.  Neurological effects of radiofrequency radiation. , 2003, Occupational medicine.

[63]  Christof Koch,et al.  Subthreshold voltage noise of rat neocortical pyramidal neurones , 2005, The Journal of physiology.

[64]  H. Bohr,et al.  Microwave-enhanced folding and denaturation of globular proteins. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[65]  A. Lytel Introduction to lasers and masers , 1966 .

[66]  C. Nicholson Electric current flow in excitable cells J. J. B. Jack, D. Noble &R. W. Tsien Clarendon Press, Oxford (1975). 502 pp., £18.00 , 1976, Neuroscience.

[67]  William F. Pickard,et al.  Radio-frequency bioeffects at the membrane level: Separation of thermal and athermal contributions in the characeae , 1981, The Journal of Membrane Biology.

[68]  Richard H. Pantell,et al.  Fundamentals of quantum electronics , 1969 .

[69]  A. Goldbeter,et al.  From simple to complex oscillatory behavior in metabolic and genetic control networks. , 2001, Chaos.

[70]  E. Carstensen,et al.  Low-frequency dielectric dispersion in suspensions of ion-exchange resins , 1971 .

[71]  D. Leitner,et al.  Hydration dependence of the mass fractal dimension and anomalous diffusion of vibrational energy in proteins. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[72]  T. Dowling,et al.  Mutual coupling analysis of arrays of apertures on cones , 1974 .

[73]  A. Taflove,et al.  Computational modeling evidence of a nonthermal electromagnetic interaction mechanism with living cells: microwave nonlinearity in the cellular sodium ion channel , 2004, IEEE Transactions on Microwave Theory and Techniques.

[74]  O P Gandhi,et al.  Comparison of cardiac-induced endogenous fields and power frequency induced exogenous fields in an anatomical model of the human body. , 1998, Physics in medicine and biology.

[75]  B. Dobberstein,et al.  Common Principles of Protein Translocation Across Membranes , 1996, Science.

[76]  W. Pickard,et al.  Biological effects of microwaves at the membrane level: two possible athermal electrophysiological mechanisms and a proposed experimental test , 1978 .

[77]  A. T. Esser,et al.  Microdosimetry for conventional and supra-electroporation in cells with organelles. , 2006, Biochemical and biophysical research communications.

[78]  O. Yifrach Hill coefficient for estimating the magnitude of cooperativity in gating transitions of voltage-dependent ion channels. , 2004, Biophysical journal.

[79]  S. Pisa,et al.  Specific absorption rate and temperature increases in the head of a cellular-phone user , 2000 .

[80]  Steiner,et al.  Magnetic field effect on picosecond electron transfer , 1998, Science.

[81]  Paolo Bernardi,et al.  Specific absorption rate and temperature elevation in a subject exposed in the far-field of radio-frequency sources operating in the 10-900-MHz range , 2003, IEEE Transactions on Biomedical Engineering.

[82]  R. Adair,et al.  Didactic discussion of stochastic resonance effects and weak signals. , 1996, Bioelectromagnetics.

[83]  V. Schramm,et al.  Enzymatic transition states and transition state analogues. , 2005, Current opinion in structural biology.

[84]  Sönke Johnsen,et al.  The physics and neurobiology of magnetoreception , 2005, Nature Reviews Neuroscience.

[85]  T. R. Gosnell,et al.  Microwave absorption spectroscopy of DNA , 1993, Biopolymers.

[86]  Albert Goldbeter,et al.  Circadian rhythms and molecular noise. , 2006, Chaos.

[87]  H Kiesewetter,et al.  Low frequency electrorotation of fixed red blood cells. , 1998, Biophysical journal.

[88]  John G R Jefferys,et al.  A NEUROBIOLOGICAL BASIS FOR ELF GUIDELINES , 2007, Health physics.

[89]  W F Pickard,et al.  Energy deposition processes in biological tissue: nonthermal biohazards seem unlikely in the ultra-high frequency range. , 2001, Bioelectromagnetics.

[90]  James C Weaver,et al.  An approach to electrical modeling of single and multiple cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[91]  C. Timmel,et al.  Effects of weak magnetic fields on free radical recombination reactions , 1998 .

[92]  G. Stuart,et al.  Single Ih Channels in Pyramidal Neuron Dendrites: Properties, Distribution, and Impact on Action Potential Output , 2006, The Journal of Neuroscience.

[93]  T. Duke,et al.  Heightened sensitivity of a lattice of membrane receptors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[94]  S. J. Webb,et al.  Resonance between 1011 and 1012 Hz in active bacterial cells as seen by laser Raman spectroscopy , 1977 .

[95]  W. Root,et al.  An introduction to the theory of random signals and noise , 1958 .

[96]  I. T. Grodsky Neuronal membrane: a physical synthesis☆ , 1976 .

[97]  R. Galamboš,et al.  Auditory perception of radio‐frequency electromagnetic fields , 1982 .

[98]  Hugo Weichel Reviewer An Introduction to Lasers and Masers , 1974 .

[99]  M. S. Cooper,et al.  The absence of coherent vibrations in the Raman spectra of living cells , 1983 .

[100]  Christiane R Timmel,et al.  A study of spin chemistry in weak magnetic fields , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[101]  Ronald Pethig,et al.  Dielectric and electronic properties of biological materials , 1979 .

[102]  A. Hudspeth,et al.  Putting ion channels to work: mechanoelectrical transduction, adaptation, and amplification by hair cells. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[103]  Quirino Balzano Proposed test for detection of nonlinear responses in biological preparations exposed to RF energy. , 2002, Bioelectromagnetics.

[104]  T. Duke,et al.  Conformational spread: the propagation of allosteric states in large multiprotein complexes. , 2004, Annual review of biophysics and biomolecular structure.

[105]  D. Bodznick,et al.  Signals and noise in the elasmobranch electrosensory system , 1999, The Journal of experimental biology.

[106]  A. Kalmijn,et al.  Electric and magnetic field detection in elasmobranch fishes. , 1982, Science.

[107]  C. J. Murray,et al.  Hydrogen tunneling in enzyme reactions. , 1989, Science.

[108]  U an der Heiden,et al.  A theoretical approach to G-protein modulation of cellular responsiveness , 1997, Journal of mathematical biology.

[109]  R. Adair,et al.  Vibrational resonances in biological systems at microwave frequencies. , 2002, Biophysical journal.

[110]  Takashi Kurahashi,et al.  Mechanism of Signal Amplification in the Olfactory Sensory Cilia , 2005, The Journal of Neuroscience.

[111]  A W Wood,et al.  A cooperative model for Ca(++) efflux windowing from cell membranes exposed to electromagnetic radiation. , 2000, Bioelectromagnetics.

[112]  Karl H. Schoenbach,et al.  Stimulation of Capacitative Calcium Entry in HL-60 Cells by Nanosecond Pulsed Electric Fields* , 2004, Journal of Biological Chemistry.

[113]  Mark J. Hagmann,et al.  Electromagnetic Absorption in a Multilayered Model of Man , 1979, IEEE Transactions on Biomedical Engineering.

[114]  Jan Gimsa,et al.  The influence of the molecular structure of lipid membranes on the electric field distribution and energy absorption , 2006, Bioelectromagnetics.

[115]  M Bikson,et al.  Effects of weak electric fields on the activity of neurons and neuronal networks. , 2003, Radiation protection dosimetry.

[116]  O. Gandhi,et al.  Absence of biologically related Raman lines in cultures of Bacillus megaterium , 1984 .

[117]  T. Ritz,et al.  The magnetic compass of domestic chickens, Gallus gallus , 2007, Journal of Experimental Biology.

[118]  Chia-lun J. Hu,et al.  A simplified theory of pearl chain effects , 1975, Radiation and environmental biophysics.

[119]  F. Cintolesia,et al.  Anisotropic recombination of an immobilized photoinduced radical pair in a 50-l T magnetic field : a model avian photomagnetoreceptor , 2003 .

[120]  W. Bialek,et al.  Physical limits to biochemical signaling. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[121]  N. B. Brookes,et al.  Spin-Orbit Coupling in the Mott Insulator Ca2RuO4 , 2001 .

[122]  Q. Balzano,et al.  A doubly resonant cavity for detection of RF demodulation by living cells , 2008, Bioelectromagnetics.

[123]  K. Schoenbach,et al.  Nanosecond pulsed electric field (nsPEF) effects on cells and tissues: apoptosis induction and tumor growth inhibition , 2001, PPPS-2001 Pulsed Power Plasma Science 2001. 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference. Digest of Papers (Cat. No.01CH37251).

[124]  S. Pollack,et al.  Electromechanical potentials in cortical bone--II. Experimental analysis. , 1987, Journal of biomechanics.

[125]  R. Adair,et al.  Biophysical limits on athermal effects of RF and microwave radiation , 2003, Bioelectromagnetics.

[126]  J. Gimsa,et al.  A comprehensive approach to electro-orientation, electrodeformation, dielectrophoresis, and electrorotation of ellipsoidal particles and biological cells. , 2001, Bioelectrochemistry.

[127]  H. Ågren,et al.  Dynamics of cavityless lasing generated by ultrafast multiphoton excitation , 2006 .

[128]  K. H. Illinger Spectroscopic properties of in vivo biological systems: boson radiative equilibrium with steady-state nonequilibrium molecular systems. , 1982, Bioelectromagnetics.

[129]  H. Fröhlich Long-range coherence and energy storage in biological systems , 1968 .

[130]  P. Hore,et al.  Role of exchange and dipolar interactions in the radical pair model of the avian magnetic compass. , 2008, Biophysical journal.

[131]  F. Barnes,et al.  Radio-microwave interactions with biological materials. , 1989, Health physics.

[132]  H. Kornfeld Bemerkung zu der Mitteilung von G. Landsberg und L. Mandelstam über eine neue Erscheinung in der Lichtzerstreuung in Krystallen , 1928, Naturwissenschaften.

[133]  G. Kalosakas,et al.  Breather-induced anomalous charge diffusion. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[134]  E. Adair,et al.  Thermoregulatory responses to RF energy absorption , 2003, Bioelectromagnetics.

[135]  F. Despa Biological Water , 2005, Annals of the New York Academy of Sciences.

[136]  J. Deans,et al.  Sensitivity of coherent oscillations in rat hippocampus to AC electric fields , 2007, The Journal of physiology.

[137]  John O. de Lorge,et al.  Operant behavior and colonic temperature of Macaca mulatta exposed to radio frequency fields at and above resonant frequencies. , 1984 .

[138]  Asher R. Sheppard,et al.  Where Does the Energy Go? Microwave Absorption in Biological Objects on the Microscopic and Molecular Scales , 2002 .

[139]  F. Kaiser External signals and internal oscillation dynamics: biophysical aspects and modelling approaches for interactions of weak electromagnetic fields at the cellular level , 1996 .

[140]  William F. Pickard,et al.  The Use of Membrane Electrical Noise in the Study of Characean Electrophysiology , 1976 .

[141]  J. Michael Textbook of Medical Physiology , 2005 .

[142]  A. Goldbeter Computational approaches to cellular rhythms , 2002, Nature.

[143]  K. Foster,et al.  Microwave Hearing: Evidence for Thermoacoustic Auditory Stimulation by Pulsed Microwaves , 1974, Science.

[144]  Alwyn C. Scott,et al.  Nonlinear Science: Emergence and Dynamics of Coherent Structures , 1999 .

[145]  Mikael P. Johansson,et al.  Nanosecond electron tunneling between the hemes in cytochrome bo3 , 2007, Proceedings of the National Academy of Sciences.

[146]  Frank Moss,et al.  Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance , 1993, Nature.

[147]  SUPPRESSION OF SYNAPTIC TRANSMISSION IN HIPPOCAMPUS BY EXTREMELY-HIGH POWER MICROWAVE PULSES SYNCHRONIZED WITH NEURONAL EXCITATION , 2006 .

[148]  K. Schulten,et al.  A model for photoreceptor-based magnetoreception in birds. , 2000, Biophysical journal.

[149]  A. Stuchebrukhov,et al.  Effect of protein dynamics on biological electron transfer. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[150]  F F Becker,et al.  Separation of human breast cancer cells from blood by differential dielectric affinity. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[151]  E. Prohofsky RF absorption involving biological macromolecules , 2004, Bioelectromagnetics.

[152]  Chester T. O'Konski,et al.  ELECTRIC PROPERTIES OF MACROMOLECULES. V. THEORY OF IONIC POLARIZATION IN POLYELECTROLYTES , 1960 .

[153]  C K Chou,et al.  Auditory response to pulsed radiofrequency energy , 2003, Bioelectromagnetics.

[154]  P. Lomdahl,et al.  Quantum-Mechanical Derivation of the Davydov Equations for Multi-Quanta States , 1990 .

[155]  D. Leitner,et al.  Anomalous diffusion of vibrational energy in proteins , 2003 .

[156]  James C. Lin,et al.  MICROWAVE‐INDUCED ACOUSTIC EFFECTS IN MAMMALIAN AUDITORY SYSTEMS AND PHYSICAL MATERIALS * , 1975, Annals of the New York Academy of Sciences.

[157]  Eine neue Erscheinung bei der Lichtzerstreuung in Krystallen , 2005, Naturwissenschaften.

[158]  A D Kalmijn,et al.  Detection and processing of electromagnetic and near-field acoustic signals in elasmobranch fishes. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[159]  G. T. Martin,et al.  Biological effects due to weak electric and magnetic fields: the temperature variation threshold. , 1999, Biophysical journal.

[160]  H. A. Pohl,et al.  Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields , 1978 .

[161]  Marek Zmyślony,et al.  Acute exposure to 930 MHz CW electromagnetic radiation in vitro affects reactive oxygen species level in rat lymphocytes treated by iron ions , 2004, Bioelectromagnetics.

[162]  C. Timmel,et al.  Radio frequency magnetic field effects on electron-hole recombination. , 2001, Physical review letters.

[163]  Richard Nuccitelli,et al.  AN ULTRASENSITIVE VIBRATING PROBE FOR MEASURING STEADY EXTRACELLULAR CURRENTS , 1974, The Journal of cell biology.

[164]  J. Ruppersberg Ion Channels in Excitable Membranes , 1996 .

[165]  B. Neuhaus,et al.  Average SAR and SAR Distributions in Man Exposed to 450-MHz Radiofrequency Radiation , 1984 .

[166]  L. Rosenhead Conduction of Heat in Solids , 1947, Nature.

[167]  C. E. Kossmann The Normal Electrocardiogram , 1953, Circulation.

[168]  U. Liebl,et al.  Electron transfer between hemes in mammalian cytochrome c oxidase. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[169]  J. Swinburne Electromagnetic Theory , 1894, Nature.

[170]  Susan Rae Smith-Baish,et al.  The dielectric properties of tissues , 1991 .

[171]  V. Pande,et al.  Electric Fields at the Active Site of an Enzyme: Direct Comparison of Experiment with Theory , 2006, Science.

[172]  Andreas Martin,et al.  The folding mechanism of a two-domain protein: folding kinetics and domain docking of the gene-3 protein of phage fd. , 2003, Journal of molecular biology.

[173]  Damijan Miklavcic,et al.  Second-order model of membrane electric field induced by alternating external electric fields , 2000, IEEE Transactions on Biomedical Engineering.

[174]  K. Cole Membranes, ions, and impulses : a chapter of classical biophysics , 1968 .

[175]  N. Kuster,et al.  Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300 MHz , 1992 .

[176]  G. Vincze,et al.  An Energy Analysis of Extracellular Hyperthermia , 2003 .

[177]  S. J. Webb,et al.  Evidence for non-thermal excitation of energy levels in active biological systems , 1977 .

[178]  T. Budinger,et al.  Pulsed magnetic field effects on calcium signaling in lymphocytes: Dependence on cell status and field intensity , 1992, FEBS letters.

[179]  P. Dimbylow,et al.  Fine resolution calculations of SAR in the human body for frequencies up to 3 GHz. , 2002, Physics in medicine and biology.

[180]  M. Meltz,et al.  Influence of radiofrequency radiation on chromosome aberrations in CHO cells and its interaction with DNA-damaging agents. , 1990, Radiation research.

[181]  J F Ashmore,et al.  Transduction and adaptation in sensory receptor cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[182]  S. J. Webb,et al.  Microwave Absorption by Normal and Tumor Cells , 1971, Science.

[183]  Sönke Johnsen,et al.  The neurobiology of magnetoreception in vertebrate animals , 2000, Trends in Neurosciences.

[184]  U. Pliquett,et al.  Nanosecond pulsed electric fields cause melanomas to self-destruct , 2006, Conference Record of the 2006 Twenty-Seventh International Power Modulator Symposium.

[185]  A. Guy,et al.  Nonionizing electromagnetic wave effects in biological materials and systems , 1972 .

[186]  D Miklavcic,et al.  Theoretical evaluation of the distributed power dissipation in biological cells exposed to electric fields. , 2000, Bioelectromagnetics.

[187]  T. Tenforde Biological Responses to Static and Time-Varying Magnetic Fields , 1989 .

[188]  Herman P. Schwan,et al.  Alternative‐Current Field‐Induced Forces and Their Biological Implications , 1969 .

[189]  James C. Weaver,et al.  Detection of weak electric fields by sharks, rays, and skates. , 1998, Chaos.

[190]  J. Reilly,et al.  Applied Bioelectricity , 1998, Springer New York.

[191]  B. R. Brown Neurophysiology: Sensing temperature without ion channels , 2003, Nature.

[192]  Cyrus P. Billimoria,et al.  Neuromodulation of Spike-Timing Precision in Sensory Neurons , 2006, The Journal of Neuroscience.

[193]  R. Nuccitelli,et al.  Endogenous electric fields in embryos during development, regeneration and wound healing. , 2003, Radiation protection dosimetry.

[194]  H. A. Pohl The Motion and Precipitation of Suspensoids in Divergent Electric Fields , 1951 .

[195]  R J Sheppard,et al.  Dielectric behaviour of biological molecules in solution , 1978 .

[196]  Walter Heiligenberg,et al.  Structure and function of neurons in the complex of the nucleus electrosensorius of the gymnotiform fish Eigenmannia: Detection and processing of electric signals in social communication , 1991, Journal of Comparative Physiology A.

[197]  J. Kirschvink Microwave absorption by magnetite: a possible mechanism for coupling nonthermal levels of radiation to biological systems. , 1996, Bioelectromagnetics.

[198]  R. Astumian,et al.  Rectification and signal averaging of weak electric fields by biological cells. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[199]  J. M. Eyster,et al.  On the B to A conformation change of the double helix , 1977, Biopolymers.

[200]  Michael J. Berry,et al.  Weak pairwise correlations imply strongly correlated network states in a neural population , 2005, Nature.

[201]  A. Goldbeter,et al.  Robustness of circadian rhythms with respect to molecular noise , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[202]  Ilya A. Balabin,et al.  Dynamically controlled protein tunneling paths in photosynthetic reaction centers. , 2000, Science.