On numerical algorithm and interactive visualization for optimal control problems

Abstract.We present methods for the visualization of the numerical solution of optimal control problems. The solution is based on dynamic programming techniques where the corresponding optimal value function is approximated on an adaptively refined grid. This approximation is then used in order to compute approximately optimal solution trajectories. We discuss requirements for the efficient visualization of both the optimal value functions and the optimal trajectories and develop graphic routines that in particular support adaptive, hierarchical grid structures, interactivity and animation. Several implementational aspects using the Graphics Programming Environment ‘GRAPE’ are discussed.

[1]  L. Grüne Asymptotic Controllability and Exponential Stabilization of Nonlinear Control Systems at Singular Points , 1998 .

[2]  Kunibert G. Siebert,et al.  An a posteriori error estimator for anisotropic refinement , 1996 .

[3]  N. Sri Namachchivaya,et al.  Maximal Lyapunov exponent and rotation numbers for two coupled oscillators driven by real noise , 1993 .

[4]  Marizio Falcone,et al.  Discrete time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations , 1994 .

[5]  M. Falcone,et al.  Fully Discrete Schemes for the Value Function of Pursuit-Evasion Games , 1994 .

[6]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[7]  Lars Grüne,et al.  Numerical Stabilization of Bilinear Control Systems , 1996 .

[8]  Lars Grüne Discrete feedback stabilization of semilinear control systems , 1996 .

[9]  Martin Rumpf,et al.  Efficient Visualization of Large - Scale Data on Hierarchical Meshes , 1997, Visualization in Scientific Computing.

[10]  L. Grüne An adaptive grid scheme for the discrete Hamilton-Jacobi-Bellman equation , 1997 .

[11]  M. Falcone,et al.  An approximation scheme for the minimum time function , 1990 .

[12]  D. Hänel,et al.  Adaptive methods on unstructured grids for Euler and Navier-Stokes equations , 1993 .

[13]  Knut Sydsæter,et al.  Optimal control theory with economic applications , 1987 .

[14]  H. Ishii,et al.  Approximate solutions of the bellman equation of deterministic control theory , 1984 .

[15]  Fabian R. Wirth,et al.  Convergence of the Value Functions of Discounted Infinite Horizon Optimal Control Problems with Low Discount Rates , 1993, Math. Oper. Res..

[16]  M. Falcone,et al.  Discrete Dynamic Programming and Viscosity Solutions of the Bellman Equation , 1989 .