A comparison of multiobjective depth-first algorithms

Many real world problems involve several, usually conflicting, objectives. Multiobjective analysis deals with these problems locating trade-offs between different optimal solutions. Regarding graph search problems, several algorithms based on best-first and depth-first approaches have been proposed to return the set of all Pareto optimal solutions. This article presents a detailed comparison between two representatives of multiobjective depth-first algorithms, PIDMOA* and MO-DF-BnB. Both of them extend previous single-objective search algorithms with linear-space requirements to the multiobjective case. Experimental analyses on their time performance over tree-shaped search spaces are presented. The results clarify the fitness of both algorithms to parameters like the number or depth of goal nodes.

[1]  Lawrence Mandow,et al.  Frontier Search for Bicriterion Shortest Path Problems , 2008, ECAI.

[2]  Richard E. Korf,et al.  Depth-First Iterative-Deepening: An Optimal Admissible Tree Search , 1985, Artif. Intell..

[3]  A. Land,et al.  An Automatic Method for Solving Discrete Programming Problems , 1960, 50 Years of Integer Programming.

[4]  Lawrence Mandow,et al.  A New Approach to Iterative Deepening Multiobjective A , 2009, AI*IA.

[5]  Alexander Reinefeld,et al.  Enhanced Iterative-Deepening Search , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Patrice Perny,et al.  Choquet-based optimisation in multiobjective shortest path and spanning tree problems , 2010, Eur. J. Oper. Res..

[7]  Matthias Ehrgott,et al.  A comparison of solution strategies for biobjective shortest path problems , 2009, Comput. Oper. Res..

[8]  Richard E. Korf,et al.  Performance of Linear-Space Search Algorithms , 1995, Artif. Intell..

[9]  Richard E. Korf,et al.  Frontier search , 2005, JACM.

[10]  Lawrence Mandow,et al.  Path recovery in frontier search for multiobjective shortest path problems , 2010, J. Intell. Manuf..

[11]  Lionel Amodeo,et al.  Metaheuristics and exact methods to solve a multiobjective parallel machines scheduling problem , 2012, J. Intell. Manuf..

[12]  Richard E. Korf,et al.  Iterative-Deepening-A*: An Optimal Admissible Tree Search , 1985, IJCAI.

[13]  Weixiong Zhang,et al.  State-Space Search , 1999, Springer New York.

[14]  Lawrence Mandow,et al.  Multiobjective A* search with consistent heuristics , 2010, JACM.

[15]  Shashi Kumar,et al.  Iterative Deepening Multiobjective A , 1996, Inf. Process. Lett..

[16]  Francis Sourd,et al.  A Multiobjective Branch-and-Bound Framework: Application to the Biobjective Spanning Tree Problem , 2008, INFORMS J. Comput..

[17]  Weixiong Zhang State-space search - algorithms, complexity, extensions, and applications , 1999 .