Weighted attentional blocks for probabilistic object tracking

In this paper we represent the object with multiple attentional blocks which reflect some findings of selective visual attention in human perception. The attentional blocks are extracted using a branch-and-bound search method on the saliency map, and meanwhile the weight of each block is determined. Independent particle filter tracking is applied to each attentional block and the tracking results of all the blocks are then combined in a linear weighting scheme to get the location of the entire target object. The attentional blocks are propagated to the object location found in each new frame and the state of the most likely particle in each block is also updated with the new propagated position. In addition, to avoid error accumulation caused by the appearance variations, the object template and the positions of the attentional blocks are adaptively updated while tracking. Experimental results show that the proposed algorithm is able to efficiently track salient objects and is better accounted for partial occlusions and large variations in appearance.

[1]  Shai Avidan,et al.  Ensemble Tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Nicu Sebe,et al.  Image saliency by isocentric curvedness and color , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[4]  Haibin Ling,et al.  Robust visual tracking using ℓ1 minimization , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[5]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[6]  Yuan F. Zheng,et al.  Object Tracking in Structured Environments for Video Surveillance Applications , 2010, IEEE Transactions on Circuits and Systems for Video Technology.

[7]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[8]  Tolga K. Çapin,et al.  A color-based face tracking algorithm for enhancing interaction with mobile devices , 2010, The Visual Computer.

[9]  Ramakant Nevatia,et al.  Simultaneous tracking and action recognition for single actor human actions , 2011, The Visual Computer.

[10]  Luc Van Gool,et al.  Hough Forests for Object Detection, Tracking, and Action Recognition , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Robert T. Collins,et al.  Mean-shift blob tracking through scale space , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[12]  S. Süsstrunk,et al.  Frequency-tuned salient region detection , 2009, CVPR 2009.

[13]  Christoph H. Lampert,et al.  Efficient Subwindow Search: A Branch and Bound Framework for Object Localization , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Kaihua Zhang,et al.  Real-time visual tracking via online weighted multiple instance learning , 2013, Pattern Recognit..

[15]  William T. Freeman,et al.  The Patch Transform , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Luc Van Gool,et al.  An adaptive color-based particle filter , 2003, Image Vis. Comput..

[17]  H. Barlow Vision Science: Photons to Phenomenology by Stephen E. Palmer , 2000, Trends in Cognitive Sciences.

[18]  Nanning Zheng,et al.  Learning to Detect a Salient Object , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Patrick Pérez,et al.  Color-Based Probabilistic Tracking , 2002, ECCV.

[20]  Ying Wu,et al.  Contextual flow , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[21]  Horst Bischof,et al.  PROST: Parallel robust online simple tracking , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[22]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[23]  Haibin Ling,et al.  Robust Visual Tracking using 1 Minimization , 2009 .

[24]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[25]  Hichem Snoussi,et al.  Improved mean shift integrating texture and color features for robust real time object tracking , 2012, The Visual Computer.

[26]  Junseok Kwon,et al.  Visual tracking decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[27]  Honghai Liu,et al.  Target tracking for mobile robot platforms via object matching and background anti-matching , 2010, Robotics Auton. Syst..

[28]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[29]  Ying Wu,et al.  Discriminative Spatial Attention for Robust Tracking , 2010, ECCV.

[30]  Dieter Schmalstieg,et al.  Real-Time Detection and Tracking for Augmented Reality on Mobile Phones , 2010, IEEE Transactions on Visualization and Computer Graphics.

[31]  Stanley T. Birchfield,et al.  Adaptive fragments-based tracking of non-rigid objects using level sets , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[32]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[33]  Qi Tian,et al.  Saliency Density Maximization for Efficient Visual Objects Discovery , 2011, IEEE Transactions on Circuits and Systems for Video Technology.

[34]  Patrick Pérez,et al.  Robust tracking with motion estimation and local Kernel-based color modeling , 2007, Image Vis. Comput..

[35]  Ming-Hsuan Yang,et al.  Online visual tracking with histograms and articulating blocks , 2010, Comput. Vis. Image Underst..

[36]  Neil J. Gordon,et al.  Editors: Sequential Monte Carlo Methods in Practice , 2001 .

[37]  Hefeng Wu,et al.  Robust object tracking using kernel-based weighted fragments , 2011, 2011 International Conference on Multimedia Technology.