A note on modeling sparse exponential-family functional response curves

Non-Gaussian functional data are considered and modeling through functional principal components analysis (FPCA) is discussed. The direct extension of popular FPCA techniques to the generalized case incorrectly uses a marginal mean estimate for a model that has an inherently conditional interpretation, and thus leads to biased estimates of population and subject-level effects. The methods proposed address this shortcoming by using either a two-stage or joint estimation strategy. The performance of all methods is compared numerically in simulations. An application to ambulatory heart rate monitoring is used to further illustrate the distinctions between approaches.

[1]  C. Crainiceanu,et al.  Corrected Confidence Bands for Functional Data Using Principal Components , 2013, Biometrics.

[2]  James S. Hodges,et al.  Richly Parameterized Linear Models: Additive, Time Series, and Spatial Models Using Random Effects , 2013 .

[3]  Joseph E Schwartz,et al.  Masked hypertension and prehypertension: diagnostic overlap and interrelationships with left ventricular mass: the Masked Hypertension Study. , 2012, American journal of hypertension.

[4]  S. Wood Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models , 2011 .

[5]  J. Schrack,et al.  Generalized multilevel function‐on‐scalar regression and principal component analysis , 2015, Biometrics.

[6]  K Y Liang,et al.  Longitudinal data analysis for discrete and continuous outcomes. , 1986, Biometrics.

[7]  P. Hall,et al.  Properties of principal component methods for functional and longitudinal data analysis , 2006, math/0608022.

[8]  P. Vieu,et al.  Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .

[9]  Helle Sørensen,et al.  An introduction with medical applications to functional data analysis , 2013, Statistics in medicine.

[10]  Huaihou Chen,et al.  A Marginal Approach to Reduced-Rank Penalized Spline Smoothing With Application to Multilevel Functional Data , 2013, Journal of the American Statistical Association.

[11]  Jianhua Z. Huang,et al.  Joint modelling of paired sparse functional data using principal components. , 2008, Biometrika.

[12]  Julien Jacques,et al.  Model-based clustering for multivariate functional data , 2013, Comput. Stat. Data Anal..

[13]  Ana-Maria Staicu,et al.  Multilevel Cross‐Dependent Binary Longitudinal Data , 2013, Biometrics.

[14]  James O. Ramsay,et al.  Functional Data Analysis , 2005 .

[15]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[16]  Ana-Maria Staicu,et al.  Functional Additive Mixed Models , 2012, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[17]  Jeff Goldsmith,et al.  Interactive graphics for functional data analyses , 2016, Stat.

[18]  Andrea Rotnitzky,et al.  Regression Models for Discrete Longitudinal Responses , 1993 .

[19]  T. Hsing,et al.  Uniform convergence rates for nonparametric regression and principal component analysis in functional/longitudinal data , 2010, 1211.2137.

[20]  Frédéric Ferraty,et al.  Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .

[21]  H. Müller,et al.  Functional Data Analysis for Sparse Longitudinal Data , 2005 .

[22]  Brian S. Caffo,et al.  Multilevel functional principal component analysis , 2009 .

[23]  Fabian Scheipl,et al.  Generalized Functional Additive Mixed Models , 2015, 1506.05384.

[24]  Catherine A. Sugar,et al.  Principal component models for sparse functional data , 1999 .

[25]  Scott L. Zeger,et al.  [Inference Based on Estimating Functions in the Presence of Nuisance Parameters]: Rejoinder , 1995 .

[26]  Brian Caffo,et al.  Longitudinal functional principal component analysis. , 2010, Electronic journal of statistics.

[27]  H. Müller,et al.  Modelling sparse generalized longitudinal observations with latent Gaussian processes , 2008 .

[28]  A. Staicu,et al.  Marginal Functional Regression Models for Analyzing the Feeding Behavior of Pigs , 2015 .

[29]  Ana-Maria Staicu,et al.  Modeling Multivariate Mixed-Response Functional Data , 2016, 1601.02461.

[30]  Yehua Li,et al.  Joint Modeling and Clustering Paired Generalized Longitudinal Trajectories With Application to Cocaine Abuse Treatment Data , 2014 .