An intuitive proof of the data processing inequality
暂无分享,去创建一个
[1] Robert König,et al. The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.
[2] Schumacher,et al. Quantum coding. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[3] Marco Tomamichel,et al. Duality Between Smooth Min- and Max-Entropies , 2009, IEEE Transactions on Information Theory.
[4] Renato Renner,et al. Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.
[5] M. Headrick,et al. Preprint typeset in JHEP style- HYPER VERSION arXiv:0704.3719 [hep-th] , 2022 .
[6] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[7] J. VonNeumann. Mathematische Grundlagen der Quantenmechanik , 1932 .
[8] M. Horodecki,et al. Quantum State Merging and Negative Information , 2005, quant-ph/0512247.
[9] M. Ruskai,et al. A UNIFIED TREATMENT OF CONVEXITY OF RELATIVE ENTROPY AND RELATED TRACE FUNCTIONS, WITH CONDITIONS FOR EQUALITY , 2009, 0903.2895.
[10] A. Uhlmann. The "transition probability" in the state space of a ∗-algebra , 1976 .
[11] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[12] N. Datta. Relative Entropies and Entanglement Monotones , 2011 .
[13] M. Ruskai. Another Short and Elementary Proof of Strong Subadditivity of Quantum Entropy , 2006, quant-ph/0604206.
[14] Marco Tomamichel,et al. A Fully Quantum Asymptotic Equipartition Property , 2008, IEEE Transactions on Information Theory.
[15] Andreas Winter,et al. Partial quantum information , 2005, Nature.
[16] E. Lieb. Convex trace functions and the Wigner-Yanase-Dyson conjecture , 1973 .
[17] Michael A. Nielsen,et al. A simple proof of the strong subadditivity inequality , 2005, Quantum Inf. Comput..
[18] A. Winter,et al. Communications in Mathematical Physics Structure of States Which Satisfy Strong Subadditivity of Quantum Entropy with Equality , 2022 .
[19] Jeroen van de Graaf,et al. Cryptographic Distinguishability Measures for Quantum-Mechanical States , 1997, IEEE Trans. Inf. Theory.
[20] E. Lieb,et al. Proof of the strong subadditivity of quantum‐mechanical entropy , 1973 .
[21] F. Herbut. On mutual information in multipartite quantum states and equality in strong subadditivity of entropy , 2003, quant-ph/0311193.
[22] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[23] M. Fannes. A continuity property of the entropy density for spin lattice systems , 1973 .
[24] R. Renner,et al. Min- and Max-Entropy in Infinite Dimensions , 2010, 1004.1386.
[25] B. Simon. Trace ideals and their applications , 1979 .
[26] Marion Kee,et al. Analysis , 2004, Machine Translation.
[27] E. Lieb,et al. A Minkowski Type Trace Inequality and Strong Subadditivity of Quantum Entropy , 2007, math/0701352.
[28] E. Lieb,et al. A Minkowski Type Trace Inequality and Strong Subadditivity of Quantum Entropy II: Convexity and Concavity , 2007, 0710.4167.
[29] D. Petz. Quasi-entropies for finite quantum systems , 1986 .
[30] T. Takayanagi,et al. AdS/CFT and strong subadditivity of entanglement entropy , 2006, hep-th/0608213.