Optimal mass transport for geometric modeling based on variational principles in convex geometry

In geometric modeling, surface parameterization plays an important role for converting triangle meshes to spline surfaces. Parameterization will introduce distortions. Conventional parameterization methods emphasize on angle-preservation, which may induce huge area distortions and cause large spline fitting errors and trigger numerical instabilities.To overcome this difficulty, this work proposes a novel area-preserving parameterization method, which is based on an optimal mass transport theory and convex geometry. Optimal mass transport mapping is measure-preserving and minimizes the transportation cost. According to Brenier’s theorem, for quadratic distance transportation costs, the optimal mass transport map is the gradient of a convex function. The graph of the convex function is a convex polyhedron with prescribed normal and areas. The existence and the uniqueness of such a polyhedron have been proved by the Minkowski-Alexandrov theorem in convex geometry. This work gives an explicit method to construct such a polyhedron based on the variational principle, and formulates the solution to the optimal transport map as the unique optimum of a convex energy. In practice, the energy optimization can be carried out using Newton’s method, and each iteration constructs a power Voronoi diagram dynamically. We tested the proposal algorithms on 3D surfaces scanned from real life. Experimental results demonstrate the efficiency and efficacy of the proposed variational approach for the optimal transport map.

[1]  Bruno Lévy,et al.  ABF++: fast and robust angle based flattening , 2005, TOGS.

[2]  Rolf Schneider,et al.  Convex Bodies: The Brunn–Minkowski Theory: Selected applications , 1993 .

[3]  Franz Aurenhammer,et al.  Minkowski-Type Theorems and Least-Squares Clustering , 1998, Algorithmica.

[4]  A. She SURFACE PARAMETERIZATION FOR MESHING BY TRIANGULATION FLATTENING , 2000 .

[5]  Quentin Mérigot,et al.  A Multiscale Approach to Optimal Transport , 2011, Comput. Graph. Forum.

[6]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.

[7]  Pedro V. Sander,et al.  Texture mapping progressive meshes , 2001, SIGGRAPH.

[8]  E. Sturler,et al.  Surface Parameterization for Meshing by Triangulation Flattenin , 2000 .

[9]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[10]  Bruno Lévy,et al.  Mesh parameterization: theory and practice , 2007, SIGGRAPH Courses.

[11]  Reinhard Klein,et al.  An Adaptable Surface Parameterization Method , 2003, IMR.

[12]  L. Kantorovich On a Problem of Monge , 2006 .

[13]  I. Daubechies,et al.  Surface Comparison with Mass Transportation , 2009, 0912.3488.

[14]  Alla Sheffer,et al.  Mesh parameterization: theory and practice Video files associated with this course are available from the citation page , 2007, SIGGRAPH Courses.

[15]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[16]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[17]  Ron Kimmel,et al.  Texture Mapping Using Surface Flattening via Multidimensional Scaling , 2002, IEEE Trans. Vis. Comput. Graph..

[18]  Bernard Chazelle,et al.  An optimal convex hull algorithm in any fixed dimension , 1993, Discret. Comput. Geom..

[19]  Allen R. Tannenbaum,et al.  Texture Mapping via Optimal Mass Transport , 2010, IEEE Transactions on Visualization and Computer Graphics.

[20]  Pierre Alliez,et al.  An Optimal Transport Approach to Robust Reconstruction and Simplification of 2d Shapes , 2022 .

[21]  S. Yau,et al.  Variational Principles for Minkowski Type Problems, Discrete Optimal Transport, and Discrete Monge-Ampere Equations , 2013, 1302.5472.

[22]  Franz Aurenhammer,et al.  Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..

[23]  Lei Zhu,et al.  Area-Preserving Mappings for the Visualization of Medical Structures , 2003, MICCAI.

[24]  Mathieu Desbrun,et al.  Blue noise through optimal transport , 2012, ACM Trans. Graph..

[25]  Gallagher Pryor,et al.  Fast Multigrid Optimal Mass Transport for Image Registration and Morphing , 2007, BMVC.

[26]  Gallagher Pryor,et al.  3D nonrigid registration via optimal mass transport on the GPU , 2009, Medical Image Anal..

[27]  Peter Schröder,et al.  Discrete conformal mappings via circle patterns , 2005, TOGS.

[28]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[29]  K. Hormann,et al.  MIPS: An Efficient Global Parametrization Method , 2000 .

[30]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[31]  Jing Hua,et al.  Authalic Parameterization of General Surfaces Using Lie Advection , 2011, IEEE Transactions on Visualization and Computer Graphics.

[32]  Facundo Mémoli,et al.  Gromov–Wasserstein Distances and the Metric Approach to Object Matching , 2011, Found. Comput. Math..

[33]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[34]  Quentin Mérigot A Comparison of Two Dual Methods for Discrete Optimal Transport , 2013, GSI.

[35]  F. P. Preparata,et al.  Convex hulls of finite sets of points in two and three dimensions , 1977, CACM.

[36]  Neil A. Dodgson,et al.  Advances in Multiresolution for Geometric Modelling , 2005 .

[37]  Lei Zhu,et al.  Optimal Mass Transport for Registration and Warping , 2004, International Journal of Computer Vision.

[38]  Yaron Lipman,et al.  Conformal Wasserstein distance: II. computational aspects and extensions , 2013, Math. Comput..

[39]  Mark Shand Algorithms for corner stitched data-structures , 2005, Algorithmica.

[40]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[41]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..