Electron dynamics near diamagnetic regions of comet 67P/Churyumov- Gerasimenko

[1]  Y. Liu,et al.  Electron Distribution Functions Around a Reconnection X‐Line Resolved by the FOTE Method , 2019, Geophysical Research Letters.

[2]  I. Richter,et al.  First observations of magnetic holes deep within the coma of a comet , 2018, Astronomy & Astrophysics.

[3]  R. Hajra,et al.  Plasma source and loss at comet 67P during the Rosetta mission , 2018, Astronomy & Astrophysics.

[4]  Tobias Kramer,et al.  Surface localization of gas sources on comet 67P/Churyumov-Gerasimenko based on DFMS/COPS data , 2018, Monthly Notices of the Royal Astronomical Society.

[5]  I. Richter,et al.  Dynamic unmagnetized plasma in the diamagnetic cavity around comet 67P/Churyumov–Gerasimenko , 2018 .

[6]  K. Glassmeier,et al.  Diamagnetic region(s): structure of the unmagnetized plasma around Comet 67P/CG , 2017 .

[7]  I. Richter,et al.  Modelling the size of the very dynamic diamagnetic cavity of comet 67P/Churyumov–Gerasimenko , 2017 .

[8]  M. Wieser,et al.  Evolution of the ion environment of comet 67P during the Rosetta mission as seen by RPC-ICA , 2017 .

[9]  N. Biver,et al.  Ion composition at comet 67P near perihelion: Rosetta observations and model-based interpretation , 2017, Monthly Notices of the Royal Astronomical Society.

[10]  K. Glassmeier Interaction of the solar wind with comets: a Rosetta perspective , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  I. J. Rae,et al.  The evolution of solar wind strahl with heliospheric distance , 2017 .

[12]  A. Eriksson,et al.  A 1D Model of Radial Ion Motion Interrupted by Ion–Neutral Interactionsin a Cometary Coma , 2017 .

[13]  L. Yang,et al.  Cold and warm electrons at comet 67P/Churyumov-Gerasimenko , 2017 .

[14]  P. Wurz,et al.  Sensitivity and fragmentation calibration of the time-of-flight mass spectrometer RTOF on board ESA's Rosetta mission , 2017 .

[15]  Z. Németh,et al.  PLASMA ENVIRONMENT AROUND COMET 67P/CHURYUMOV–GERASIMENKO AT PERIHELION: MODEL COMPARISON WITH ROSETTA DATA , 2016 .

[16]  D. Frühauff,et al.  Structure and evolution of the diamagnetic cavity at comet 67P/Churyumov-Gerasimenko , 2016 .

[17]  T. Gombosi,et al.  A possible mechanism for the formation of magnetic field dropouts in the coma of 67P/Churyumov–Gerasimenko , 2016 .

[18]  J. Lebreton,et al.  RPC observation of the development and evolution of plasma interaction boundaries at 67P/Churyumov-Gerasimenko , 2016 .

[19]  I. Richter,et al.  Charged particle signatures of the diamagnetic cavity of comet 67P/Churyumov–Gerasimenko , 2016 .

[20]  J. Lebreton,et al.  Ionospheric plasma of comet 67P probed byRosettaat 3 au from the Sun , 2016, Monthly Notices of the Royal Astronomical Society.

[21]  N. Biver,et al.  Evolution of water production of 67P/Churyumov-Gerasimenko: an empirical model and a multi-instrument study , 2016 .

[22]  A. Eriksson,et al.  MODEL-OBSERVATION COMPARISONS OF ELECTRON NUMBER DENSITIES IN THE COMA OF 67P/CHURYUMOV–GERASIMENKO DURING 2015 JANUARY , 2016 .

[23]  S. Schwartz,et al.  Characterizing cometary electrons with kappa distributions , 2016 .

[24]  N. Edberg,et al.  Suprathermal electrons near the nucleus of comet 67P/Churyumov‐Gerasimenko at 3 AU: Model comparisons with Rosetta data , 2016 .

[25]  B. Lavraud,et al.  First in situ evidence of electron pitch angle scattering due to magnetic field line curvature in the Ion diffusion region , 2016 .

[26]  Anders Eriksson,et al.  First detection of a diamagnetic cavity at comet 67P/Churyumov-Gerasimenko , 2016 .

[27]  B. Jakosky,et al.  Plasma clouds and snowplows: Bulk plasma escape from Mars observed by MAVEN , 2016 .

[28]  S. Debei,et al.  Insolation, erosion, and morphology of comet 67P/Churyumov-Gerasimenko , 2015 .

[29]  C. Russell,et al.  The nonmagnetic nucleus of comet 67P/Churyumov-Gerasimenko , 2015, Science.

[30]  E. Kührt,et al.  Time variability and heterogeneity in the coma of 67P/Churyumov-Gerasimenko , 2015, Science.

[31]  T. Gombosi Physics of Cometary Magnetospheres , 2015 .

[32]  K. Glassmeier,et al.  Dynamical features and spatial structures of the plasma interaction region of 67P/Churyumov–Gerasimenko and the solar wind , 2015 .

[33]  K. Glassmeier,et al.  Plasma environment of a weak comet - Predictions for Comet 67P/Churyumov-Gerasimenko from multifluid-MHD and Hybrid models , 2014 .

[34]  X. Blanco‐Cano,et al.  Ninety degrees pitch angle enhancements of suprathermal electrons associated with interplanetary shocks , 2014 .

[35]  J. Steinberg,et al.  Variability of the solar wind suprathermal electron strahl , 2012 .

[36]  Can Huang,et al.  Multispacecraft observation of electron pitch angle distributions in magnetotail reconnection , 2010 .

[37]  B. Anderson,et al.  Magnetic field line curvature induced pitch angle diffusion in the inner magnetosphere , 2008 .

[38]  J.-E. Wahlund,et al.  RPC-LAP: The Rosetta Langmuir Probe Instrument , 2007 .

[39]  R. Lundin,et al.  RPC-IES: The Ion and Electron Sensor of the Rosetta Plasma Consortium , 2007 .

[40]  S. Barabash,et al.  RPC-ICA: The Ion Composition Analyzer of the Rosetta Plasma Consortium , 2007 .

[41]  J. Lebreton,et al.  RPC-MIP: the Mutual Impedance Probe of the Rosetta Plasma Consortium , 2007 .

[42]  K. Glassmeier,et al.  RPC: The Rosetta Plasma Consortium , 2007 .

[43]  K. Glassmeier,et al.  RPC-MAG The Fluxgate Magnetometer in the ROSETTA Plasma Consortium , 2007 .

[44]  L. Duvet,et al.  Rosina – Rosetta Orbiter Spectrometer for Ion and Neutral Analysis , 2007 .

[45]  T. Gombosi,et al.  Cometary magnetospheres: a tutorial , 2004 .

[46]  T. Cravens,et al.  Magnetohydrodynamic processes in the inner coma of comet Halley , 1997 .

[47]  J. Phillips,et al.  Effects of spacecraft potential on three-dimensional electron measurements in the solar wind , 1994 .

[48]  K. Glassmeier,et al.  Electron distributions upstream of the comet Halley bow shock: Evidence for adiabatic heating , 1992 .

[49]  R. Bingham,et al.  Theory of wave activity occurring in the AMPTE artificial comet , 1991 .

[50]  Lev M. Zelenyi,et al.  Regular and chaotic charged particle motion in magnetotaillike field reversals: 1. Basic theory of trapped motion , 1989 .

[51]  W. I. Axford,et al.  The formation of a magnetic-field-free cavity at comet Halley , 1987, Nature.

[52]  T. Cravens The physics of the cometary contact surface , 1986 .

[53]  R. Treumann,et al.  Waves and electric fields associated with the first AMPTE artificial comet , 1986 .

[54]  K. Glassmeier,et al.  First results from the Giotto magnetometer experiment at comet Halley , 1986 .

[55]  Wolfgang Baumjohann,et al.  Dynamics of the AMPTE artificial comet , 1986, Nature.

[56]  W. Feldman,et al.  Heat flux observations and the location of the transition region boundary of Giacobini‐Zinner , 1986 .

[57]  W. Feldman,et al.  Solar wind electrons , 1975 .

[58]  Leo Haser,et al.  Distribution d’intensité dans la tête d’une comète , 1957, Bulletin de la Classe des sciences.