Electron dynamics near diamagnetic regions of comet 67P/Churyumov- Gerasimenko
暂无分享,去创建一个
I. Richter | T. Cravens | M. Rubin | M. Galand | R. Goldstein | H. Madanian | J. Burch | A. Eriksson | E. Vigren | P. Mokashi | Z. Németh
[1] Y. Liu,et al. Electron Distribution Functions Around a Reconnection X‐Line Resolved by the FOTE Method , 2019, Geophysical Research Letters.
[2] I. Richter,et al. First observations of magnetic holes deep within the coma of a comet , 2018, Astronomy & Astrophysics.
[3] R. Hajra,et al. Plasma source and loss at comet 67P during the Rosetta mission , 2018, Astronomy & Astrophysics.
[4] Tobias Kramer,et al. Surface localization of gas sources on comet 67P/Churyumov-Gerasimenko based on DFMS/COPS data , 2018, Monthly Notices of the Royal Astronomical Society.
[5] I. Richter,et al. Dynamic unmagnetized plasma in the diamagnetic cavity around comet 67P/Churyumov–Gerasimenko , 2018 .
[6] K. Glassmeier,et al. Diamagnetic region(s): structure of the unmagnetized plasma around Comet 67P/CG , 2017 .
[7] I. Richter,et al. Modelling the size of the very dynamic diamagnetic cavity of comet 67P/Churyumov–Gerasimenko , 2017 .
[8] M. Wieser,et al. Evolution of the ion environment of comet 67P during the Rosetta mission as seen by RPC-ICA , 2017 .
[9] N. Biver,et al. Ion composition at comet 67P near perihelion: Rosetta observations and model-based interpretation , 2017, Monthly Notices of the Royal Astronomical Society.
[10] K. Glassmeier. Interaction of the solar wind with comets: a Rosetta perspective , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[11] I. J. Rae,et al. The evolution of solar wind strahl with heliospheric distance , 2017 .
[12] A. Eriksson,et al. A 1D Model of Radial Ion Motion Interrupted by Ion–Neutral Interactionsin a Cometary Coma , 2017 .
[13] L. Yang,et al. Cold and warm electrons at comet 67P/Churyumov-Gerasimenko , 2017 .
[14] P. Wurz,et al. Sensitivity and fragmentation calibration of the time-of-flight mass spectrometer RTOF on board ESA's Rosetta mission , 2017 .
[15] Z. Németh,et al. PLASMA ENVIRONMENT AROUND COMET 67P/CHURYUMOV–GERASIMENKO AT PERIHELION: MODEL COMPARISON WITH ROSETTA DATA , 2016 .
[16] D. Frühauff,et al. Structure and evolution of the diamagnetic cavity at comet 67P/Churyumov-Gerasimenko , 2016 .
[17] T. Gombosi,et al. A possible mechanism for the formation of magnetic field dropouts in the coma of 67P/Churyumov–Gerasimenko , 2016 .
[18] J. Lebreton,et al. RPC observation of the development and evolution of plasma interaction boundaries at 67P/Churyumov-Gerasimenko , 2016 .
[19] I. Richter,et al. Charged particle signatures of the diamagnetic cavity of comet 67P/Churyumov–Gerasimenko , 2016 .
[20] J. Lebreton,et al. Ionospheric plasma of comet 67P probed byRosettaat 3 au from the Sun , 2016, Monthly Notices of the Royal Astronomical Society.
[21] N. Biver,et al. Evolution of water production of 67P/Churyumov-Gerasimenko: an empirical model and a multi-instrument study , 2016 .
[22] A. Eriksson,et al. MODEL-OBSERVATION COMPARISONS OF ELECTRON NUMBER DENSITIES IN THE COMA OF 67P/CHURYUMOV–GERASIMENKO DURING 2015 JANUARY , 2016 .
[23] S. Schwartz,et al. Characterizing cometary electrons with kappa distributions , 2016 .
[24] N. Edberg,et al. Suprathermal electrons near the nucleus of comet 67P/Churyumov‐Gerasimenko at 3 AU: Model comparisons with Rosetta data , 2016 .
[25] B. Lavraud,et al. First in situ evidence of electron pitch angle scattering due to magnetic field line curvature in the Ion diffusion region , 2016 .
[26] Anders Eriksson,et al. First detection of a diamagnetic cavity at comet 67P/Churyumov-Gerasimenko , 2016 .
[27] B. Jakosky,et al. Plasma clouds and snowplows: Bulk plasma escape from Mars observed by MAVEN , 2016 .
[28] S. Debei,et al. Insolation, erosion, and morphology of comet 67P/Churyumov-Gerasimenko , 2015 .
[29] C. Russell,et al. The nonmagnetic nucleus of comet 67P/Churyumov-Gerasimenko , 2015, Science.
[30] E. Kührt,et al. Time variability and heterogeneity in the coma of 67P/Churyumov-Gerasimenko , 2015, Science.
[31] T. Gombosi. Physics of Cometary Magnetospheres , 2015 .
[32] K. Glassmeier,et al. Dynamical features and spatial structures of the plasma interaction region of 67P/Churyumov–Gerasimenko and the solar wind , 2015 .
[33] K. Glassmeier,et al. Plasma environment of a weak comet - Predictions for Comet 67P/Churyumov-Gerasimenko from multifluid-MHD and Hybrid models , 2014 .
[34] X. Blanco‐Cano,et al. Ninety degrees pitch angle enhancements of suprathermal electrons associated with interplanetary shocks , 2014 .
[35] J. Steinberg,et al. Variability of the solar wind suprathermal electron strahl , 2012 .
[36] Can Huang,et al. Multispacecraft observation of electron pitch angle distributions in magnetotail reconnection , 2010 .
[37] B. Anderson,et al. Magnetic field line curvature induced pitch angle diffusion in the inner magnetosphere , 2008 .
[38] J.-E. Wahlund,et al. RPC-LAP: The Rosetta Langmuir Probe Instrument , 2007 .
[39] R. Lundin,et al. RPC-IES: The Ion and Electron Sensor of the Rosetta Plasma Consortium , 2007 .
[40] S. Barabash,et al. RPC-ICA: The Ion Composition Analyzer of the Rosetta Plasma Consortium , 2007 .
[41] J. Lebreton,et al. RPC-MIP: the Mutual Impedance Probe of the Rosetta Plasma Consortium , 2007 .
[42] K. Glassmeier,et al. RPC: The Rosetta Plasma Consortium , 2007 .
[43] K. Glassmeier,et al. RPC-MAG The Fluxgate Magnetometer in the ROSETTA Plasma Consortium , 2007 .
[44] L. Duvet,et al. Rosina – Rosetta Orbiter Spectrometer for Ion and Neutral Analysis , 2007 .
[45] T. Gombosi,et al. Cometary magnetospheres: a tutorial , 2004 .
[46] T. Cravens,et al. Magnetohydrodynamic processes in the inner coma of comet Halley , 1997 .
[47] J. Phillips,et al. Effects of spacecraft potential on three-dimensional electron measurements in the solar wind , 1994 .
[48] K. Glassmeier,et al. Electron distributions upstream of the comet Halley bow shock: Evidence for adiabatic heating , 1992 .
[49] R. Bingham,et al. Theory of wave activity occurring in the AMPTE artificial comet , 1991 .
[50] Lev M. Zelenyi,et al. Regular and chaotic charged particle motion in magnetotaillike field reversals: 1. Basic theory of trapped motion , 1989 .
[51] W. I. Axford,et al. The formation of a magnetic-field-free cavity at comet Halley , 1987, Nature.
[52] T. Cravens. The physics of the cometary contact surface , 1986 .
[53] R. Treumann,et al. Waves and electric fields associated with the first AMPTE artificial comet , 1986 .
[54] K. Glassmeier,et al. First results from the Giotto magnetometer experiment at comet Halley , 1986 .
[55] Wolfgang Baumjohann,et al. Dynamics of the AMPTE artificial comet , 1986, Nature.
[56] W. Feldman,et al. Heat flux observations and the location of the transition region boundary of Giacobini‐Zinner , 1986 .
[57] W. Feldman,et al. Solar wind electrons , 1975 .
[58] Leo Haser,et al. Distribution d’intensité dans la tête d’une comète , 1957, Bulletin de la Classe des sciences.