Prognostic relevance of integrated genetic profiling in acute myeloid leukemia.

BACKGROUND Acute myeloid leukemia (AML) is a heterogeneous disease with respect to presentation and clinical outcome. The prognostic value of recently identified somatic mutations has not been systematically evaluated in a phase 3 trial of treatment for AML. METHODS We performed a mutational analysis of 18 genes in 398 patients younger than 60 years of age who had AML and who were randomly assigned to receive induction therapy with high-dose or standard-dose daunorubicin. We validated our prognostic findings in an independent set of 104 patients. RESULTS We identified at least one somatic alteration in 97.3% of the patients. We found that internal tandem duplication in FLT3 (FLT3-ITD), partial tandem duplication in MLL (MLL-PTD), and mutations in ASXL1 and PHF6 were associated with reduced overall survival (P=0.001 for FLT3-ITD, P=0.009 for MLL-PTD, P=0.05 for ASXL1, and P=0.006 for PHF6); CEBPA and IDH2 mutations were associated with improved overall survival (P=0.05 for CEBPA and P=0.01 for IDH2). The favorable effect of NPM1 mutations was restricted to patients with co-occurring NPM1 and IDH1 or IDH2 mutations. We identified genetic predictors of outcome that improved risk stratification among patients with AML, independently of age, white-cell count, induction dose, and post-remission therapy, and validated the significance of these predictors in an independent cohort. High-dose daunorubicin, as compared with standard-dose daunorubicin, improved the rate of survival among patients with DNMT3A or NPM1 mutations or MLL translocations (P=0.001) but not among patients with wild-type DNMT3A, NPM1, and MLL (P=0.67). CONCLUSIONS We found that DNMT3A and NPM1 mutations and MLL translocations predicted an improved outcome with high-dose induction chemotherapy in patients with AML. These findings suggest that mutational profiling could potentially be used for risk stratification and to inform prognostic and therapeutic decisions regarding patients with AML. (Funded by the National Cancer Institute and others.).

[1]  D. Rakheja,et al.  IDH mutations in acute myeloid leukemia. , 2012, Human pathology.

[2]  M. Caligiuri,et al.  ASXL1 mutations identify a high-risk subgroup of older patients with primary cytogenetically normal AML within the ELN Favorable genetic category. , 2011, Blood.

[3]  M. Caligiuri,et al.  TET2 mutations improve the new European LeukemiaNet risk classification of acute myeloid leukemia: a Cancer and Leukemia Group B study. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[4]  J. Licht,et al.  DNMT3A mutations in acute myeloid leukemia , 2011, Nature Genetics.

[5]  Yong-mei Zhu,et al.  Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia , 2011, Nature Genetics.

[6]  Torsten Haferlach,et al.  Molecular genetics of adult acute myeloid leukemia: prognostic and therapeutic implications. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[7]  A. Ferrando,et al.  PHF6 mutations in adult acute myeloid leukemia , 2011, Leukemia.

[8]  J. Licht,et al.  Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. , 2010, Cancer cell.

[9]  M. Caligiuri,et al.  IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[10]  Omar Abdel-Wahab,et al.  The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. , 2010, Cancer cell.

[11]  J. Soulier,et al.  Mutation in TET2 in myeloid cancers. , 2009, The New England journal of medicine.

[12]  H. Döhner,et al.  High-dose daunorubicin in older patients with acute myeloid leukemia. , 2009, The New England journal of medicine.

[13]  Ken Chen,et al.  Recurring mutations found by sequencing an acute myeloid leukemia genome. , 2009, The New England journal of medicine.

[14]  D. Gilliland,et al.  Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. , 2009, Blood.

[15]  M. Patnaik,et al.  Anthracycline dose intensification in acute myeloid leukemia. , 2009, The New England journal of medicine.

[16]  Axel Benner,et al.  Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. , 2008, The New England journal of medicine.

[17]  R. Tibshirani,et al.  Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. , 2004, The New England journal of medicine.

[18]  R. Verhaak,et al.  Prognostically useful gene-expression profiles in acute myeloid leukemia. , 2004, The New England journal of medicine.

[19]  S. Fröhling,et al.  CEBPA mutations in younger adults with acute myeloid leukemia and normal cytogenetics: prognostic relevance and analysis of cooperating mutations. , 2004, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[20]  Axel Benner,et al.  Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML Study Group Ulm. , 2002, Blood.

[21]  C. Bloomfield,et al.  Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). , 2002, Blood.

[22]  M. Slovak,et al.  Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. , 2000, Blood.

[23]  M. Caligiuri,et al.  Rearrangement of ALL1 (MLL) in acute myeloid leukemia with normal cytogenetics. , 1998, Cancer research.

[24]  J. Booth,et al.  Resampling-Based Multiple Testing. , 1994 .