Droplet epitaxy of semiconductor nanostructures for quantum photonic devices

The long dreamed ‘quantum internet’ would consist of a network of quantum nodes (solid-state or atomic systems) linked by flying qubits, naturally based on photons, travelling over long distances at the speed of light, with negligible decoherence. A key component is a light source, able to provide single or entangled photon pairs. Among the different platforms, semiconductor quantum dots (QDs) are very attractive, as they can be integrated with other photonic and electronic components in miniaturized chips. In the early 1990s two approaches were developed to synthetize self-assembled epitaxial semiconductor QDs, or ‘artificial atoms’—namely, the Stranski–Krastanov (SK) and the droplet epitaxy (DE) methods. Because of its robustness and simplicity, the SK method became the workhorse to achieve several breakthroughs in both fundamental and technological areas. The need for specific emission wavelengths or structural and optical properties has nevertheless motivated further research on the DE method and its more recent development, local droplet etching (LDE), as complementary routes to obtain high-quality semiconductor nanostructures. The recent reports on the generation of highly entangled photon pairs, combined with good photon indistinguishability, suggest that DE and LDE QDs may complement (and sometimes even outperform) conventional SK InGaAs QDs as quantum emitters. We present here a critical survey of the state of the art of DE and LDE, highlighting the advantages and weaknesses, the achievements and challenges that are still open, in view of applications in quantum communication and technology.The droplet epitaxy technique has emerged as an alternative to the most commonly used Stranski–Krastanov for fabricating semiconductor nanostructures. This Review discusses the important aspects of droplet epitaxy quantum dots, from the growth mechanism to device application.

[1]  J. Vuvckovi'c,et al.  Second harmonic generation in photonic crystal cavities in (111)-oriented GaAs , 2013, 1308.6051.

[2]  O. Schmidt,et al.  Independent wavelength and density control of uniform GaAs/AlGaAs quantum dots grown by infilling self-assembled nanoholes , 2012 .

[3]  O. Schmidt,et al.  Strain-induced tuning of the emission wavelength of high quality GaAs/AlGaAs quantum dots in the spectral range of the 87Rb D2 lines , 2011 .

[4]  Toyohiro Chikyow,et al.  New MBE growth method for InSb quantum well boxes , 1991 .

[5]  H. Sakaki,et al.  Optical properties of GaSb/GaAs type-ІІ quantum dots grown by droplet epitaxy , 2009 .

[6]  Zhiming M. Wang,et al.  Droplet epitaxy for advanced optoelectronic materials and devices , 2014 .

[7]  P. Lodahl,et al.  Interfacing single photons and single quantum dots with photonic nanostructures , 2013, 1312.1079.

[8]  D. Englund,et al.  Solid-state single-photon emitters , 2016, Nature Photonics.

[9]  B. Gerardot,et al.  Anomalous anticrossing of neutral exciton states in GaAs/AlGaAs quantum dots , 2014 .

[10]  E. Kapon,et al.  Self Limiting Growth of Quantum Dot Heterostructures on Nonplanar {111}B Substrates , 1997 .

[11]  I. Sagnes,et al.  Near-optimal single-photon sources in the solid state , 2015, Nature Photonics.

[12]  V. Zwiller,et al.  Phonon-Assisted Two-Photon Interference from Remote Quantum Emitters , 2017, Nano letters.

[13]  Katsuyuki Watanabe,et al.  Fabrication of GaAs Quantum Dots by Modified Droplet Epitaxy , 2000 .

[14]  E. Lieb,et al.  Quantum Dots , 2019, Encyclopedia of Color Science and Technology.

[15]  Jian-Wei Pan,et al.  QUANTUM OPTICS Push-button photon entanglement , 2014 .

[16]  Baolai Liang,et al.  Nanoholes fabricated by self-assembled gallium nanodrill on GaAs(100) , 2007 .

[17]  Larry A. Coldren,et al.  High-frequency single-photon source with polarization control , 2007 .

[18]  J. Bloch,et al.  Exciton radiative lifetime controlled by the lateral confinement energy in a single quantum dot , 2005 .

[19]  Wolfgang Hansen,et al.  Dynamics of mass transport during nanohole drilling by local droplet etching , 2015, Nanoscale Research Letters.

[20]  L. Freund,et al.  SiGe Coherent Islanding and Stress Relaxation in the High Mobility Regime , 1997 .

[21]  Robert A. Taylor,et al.  InGaN quantum dots grown by metalorganic vapor phase epitaxy employing a post-growth nitrogen anneal , 2003 .

[22]  Ivan V. Markov,et al.  Crystal growth for beginners , 1995 .

[23]  Janik Wolters,et al.  Simple Atomic Quantum Memory Suitable for Semiconductor Quantum Dot Single Photons. , 2017, Physical review letters.

[24]  Kenji Watanabe,et al.  Modified droplet epitaxy GaAs/AlGaAs quantum dots grown on a variable thickness wetting layer , 2003 .

[25]  Mohamed Henini,et al.  Orientation dependence of the Si doping of GaAs grown by molecular beam epitaxy , 1993 .

[26]  V. Zwiller,et al.  On-demand generation of background-free single photons from a solid-state source , 2017, 1712.06937.

[27]  E. Ivchenko,et al.  Dark-bright mixing of interband transitions in symmetric semiconductor quantum dots. , 2011, Physical review letters.

[28]  A. Bhattacharya,et al.  Self-Assembly in Semiconductor Epitaxy: From Growth Mechanisms to Device Applications , 2015 .

[29]  S. Gulde,et al.  Quantum nature of a strongly coupled single quantum dot–cavity system , 2007, Nature.

[30]  D. Ritchie,et al.  Universal Growth Scheme for Quantum Dots with Low Fine-Structure Splitting at Various Emission Wavelengths , 2017 .

[31]  S. Sanguinetti,et al.  Ultra-narrow emission from single GaAs self-assembled quantum dots grown by droplet epitaxy , 2009, Nanotechnology.

[32]  Dong He,et al.  Satellite-based entanglement distribution over 1200 kilometers , 2017, Science.

[33]  R. Oliver,et al.  Nitride quantum light sources , 2016 .

[34]  Eun-Soo Kim,et al.  Origin of nanohole formation by etching based on droplet epitaxy. , 2014, Nanoscale.

[35]  O. Schmidt,et al.  Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K , 2007 .

[36]  Dirk Reuter,et al.  Control of fine-structure splitting and biexciton binding in In x Ga 1 − x As quantum dots by annealing , 2004 .

[37]  Andrei Schliwa,et al.  Impact of size, shape, and composition on piezoelectric effects and electronic properties of In ( Ga ) As ∕ Ga As quantum dots , 2007 .

[38]  S. Sanguinetti,et al.  High temperature single photon emitter monolithically integrated on silicon , 2012 .

[39]  Aleksander Tartakovskii,et al.  Quantum dots : optics, electron transport and future applications , 2012 .

[40]  Y. Arakawa,et al.  Identification of electric dipole moments of excitonic complexes in nitride-based quantum dots , 2013 .

[41]  Self-assembled GaAs islands on Si by droplet epitaxy , 2010 .

[42]  O. Schmidt,et al.  Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions , 2016, Nature Communications.

[43]  A. Gocalinska,et al.  Selective carrier injection into patterned arrays of pyramidal quantum dots for entangled photon light-emitting diodes , 2016, 1707.06190.

[44]  Dirk Englund,et al.  Material platforms for spin-based photonic quantum technologies , 2018, Nature Reviews Materials.

[45]  M. Versteegh,et al.  Semiconductor devices for entangled photon pair generation: a review , 2017, Reports on progress in physics. Physical Society.

[46]  W. Pernice,et al.  Carbon nanotubes as emerging quantum-light sources , 2018, Nature Materials.

[47]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[48]  M. Ramsteiner,et al.  Incorporation of the dopants Si and Be into GaAs nanowires , 2010 .

[49]  Hang Zheng,et al.  Detuning effect in quantum dynamics of a strongly coupled single quantum dot–cavity system , 2008 .

[50]  O. Schmidt,et al.  A light-hole exciton in a quantum dot , 2013, Nature Physics.

[51]  Y. Arakawa,et al.  Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot. , 2014, Nano letters.

[52]  Benson,et al.  Regulated and entangled photons from a single quantum Dot , 2000, Physical review letters.

[53]  J. Martín-Sánchez,et al.  Wavelength-tunable sources of entangled photons interfaced with atomic vapours , 2016, Nature Communications.

[54]  N. Gisin,et al.  From Bell's theorem to secure quantum key distribution. , 2005, Physical review letters.

[55]  Yoshihisa Yamamoto,et al.  Indistinguishable photons from a single-photon device , 2002, Nature.

[56]  Kenji Watanabe,et al.  Low density GaAs/AlGaAs quantum dots grown by modified droplet epitaxy , 2004 .

[57]  S. Denbaars,et al.  Direct formation of quantum‐sized dots from uniform coherent islands of InGaAs on GaAs surfaces , 1993 .

[58]  O. Schmidt,et al.  Three-dimensional composition profiles of single quantum dots determined by scanning-probe-microscopy-based nanotomography. , 2008, Nano letters.

[59]  S. Sanguinetti,et al.  Coupled quantum dot–ring structures by droplet epitaxy , 2011, Nanotechnology.

[60]  K. Sakoda,et al.  Self-Limiting Growth of Hexagonal and Triangular Quantum Dots on (111)A , 2012 .

[61]  H. Sakaki,et al.  Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .

[62]  A. Stemmann,et al.  Dynamics of self-assembled droplet etching , 2009 .

[63]  R Richard Nötzel,et al.  Strain-driven alignment of In nanocrystals on InGaAs quantum dot arrays and coupled plasmon-quantum dot emission , 2010 .

[64]  Ian Farrer,et al.  Two-photon interference of the emission from electrically tunable remote quantum dots , 2010 .

[65]  C. Schneider,et al.  Resonance fluorescence from an atomic-quantum-memory compatible single photon source based on GaAs droplet quantum dots , 2018, Applied Physics Letters.

[66]  C. Humphreys,et al.  Cavity-enhanced blue single-photon emission from a single InGaN∕GaN quantum dot , 2007 .

[67]  Jerry B. Marion,et al.  Experiments and theory , 1963 .

[68]  Eaglesham,et al.  Dislocation-free Stranski-Krastanow growth of Ge on Si(100). , 1990, Physical review letters.

[69]  Isabelle Sagnes,et al.  Ultrabright source of entangled photon pairs , 2010, Nature.

[70]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[71]  J. Venables Atomic processes in crystal growth , 1994 .

[72]  Harald Giessen,et al.  Eleven nanometer alignment precision of a plasmonic nanoantenna with a self-assembled GaAs quantum dot. , 2014, Nano letters.

[73]  J. Leem,et al.  Nanoscale InGaAs concave disks fabricated by heterogeneous droplet epitaxy , 2000 .

[74]  P. Smereka,et al.  Unified model of droplet epitaxy for compound semiconductor nanostructures: Experiments and theory , 2012, 1211.0486.

[75]  T. Noda,et al.  Atomic scale analysis of self assembled GaAs/AlGaAs quantum dots grown by droplet epitaxy , 2010 .

[76]  K. Sakoda,et al.  Type-II recombination dynamics of tensile-strained GaP quantum dots in GaAs grown by droplet epitaxy , 2016 .

[77]  B. Gerardot,et al.  Entangled photon pairs from semiconductor quantum dots. , 2005, Physical Review Letters.

[78]  S. Sanguinetti,et al.  Gallium surface diffusion on GaAs (001) surfaces measured by crystallization dynamics of Ga droplets , 2014 .

[79]  On-chip generation and guiding of quantum light from a site-controlled quantum dot , 2014, 1403.3221.

[80]  N. Inoue MBE monolayer growth control by in-situ electron microscopy , 1991 .

[81]  D. Fuster,et al.  Fundamental role of arsenic flux in nanohole formation by Ga droplet etching on GaAs(001) , 2014, Nanoscale Research Letters.

[82]  O. Schmidt,et al.  Experimental methods of post-growth tuning of the excitonic fine structure splitting in semiconductor quantum dots , 2012, Nanoscale Research Letters.

[83]  J. Tersoff,et al.  Origin of quantum ring formation during droplet epitaxy. , 2013, Physical Review Letters.

[84]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[85]  R. Nötzel,et al.  Temperature activated coupling in topologically distinct semiconductor nanostructures , 2016 .

[86]  O. Schmidt,et al.  Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots , 2016, Nature Communications.

[87]  I. Suemune,et al.  Symmetric quantum dots as efficient sources of highly entangled photons: Violation of Bell's inequality without spectral and temporal filtering , 2013, 1302.6389.

[88]  K. Sakoda,et al.  Impact of heavy hole-light hole coupling on optical selection rules in GaAs quantum dots , 2010, 1006.0347.

[89]  O. Schmidt,et al.  Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry. , 2012, Physical review letters.

[90]  O. Schmidt,et al.  An artificial Rb atom in a semiconductor with lifetime-limited linewidth , 2015, 1508.06461.

[91]  Electrically-Pumped Wavelength-Tunable GaAs Quantum Dots Interfaced with Rubidium Atoms , 2016, ACS photonics.

[92]  P. Smereka,et al.  Ordered arrays of embedded Ga nanoparticles on patterned silicon substrates , 2014, Nanotechnology.

[93]  S. Sanguinetti,et al.  High-Yield Fabrication of Entangled Photon Emitters for Hybrid Quantum Networking Using High-Temperature Droplet Epitaxy. , 2017, Nano letters.

[94]  Stephen J. Pearton,et al.  Optically detected carrier confinement to one and zero dimension in GaAs quantum well wires and boxes , 1986 .

[95]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[96]  Shiro Tsukamoto,et al.  Photoluminescence studies of GaAs quantum dots grown by droplet epitaxy , 2001 .

[97]  S. Sanguinetti,et al.  Shape control via surface reconstruction kinetics of droplet epitaxy nanostructures , 2010 .

[98]  V. Scarani,et al.  Device-independent quantum key distribution secure against collective attacks , 2009, 0903.4460.

[99]  S. Sanguinetti,et al.  Spectral diffusion and line broadening in single self-assembled GaAs∕AlGaAs quantum dot photoluminescence , 2008 .

[100]  B. Joyce,et al.  Reflection high energy electron diffraction intensity oscillation study of the growth of GaAs on GaAs(111)A , 1994 .

[101]  S. Sanguinetti,et al.  Ordered array of Ga droplets on GaAs(001) by local anodic oxidation , 2014 .

[102]  Michael Pepper,et al.  Electrically Driven Single-Photon Source , 2001, Science.

[103]  S. Sanguinetti,et al.  Precise shape engineering of epitaxial quantum dots by growth kinetics , 2015 .

[104]  A. Shields Semiconductor quantum light sources , 2007, 0704.0403.

[105]  S. Sanguinetti,et al.  Crystallization kinetics of Ga metallic nano-droplets under As flux , 2013, Nanotechnology.

[106]  D. Ritchie,et al.  Coherence of an entangled exciton-photon state. , 2007, Physical review letters.

[107]  S. Sanguinetti,et al.  Electron-phonon interaction in individual strain-free GaAs/Al0.3Ga0.7As quantum dots , 2006 .

[108]  O. Schmidt,et al.  Volume dependence of excitonic fine structure splitting in geometrically similar quantum dots , 2014 .

[109]  K. Sakoda,et al.  Nuclear magnetization in gallium arsenide quantum dots at zero magnetic field , 2013, Nature Communications.

[110]  A. Zunger,et al.  Pseudopotential calculation of the excitonic fine structure of million-atom self-assembledIn1−xGaxAs/GaAsquantum dots , 2003 .

[111]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[112]  S. Burger,et al.  Enhanced photon-extraction efficiency from deterministic quantum-dot microlenses , 2013, 1312.6298.

[113]  B. Alén,et al.  Formation of Lateral Low Density In(Ga)As Quantum Dot Pairs in GaAs Nanoholes , 2009 .

[114]  S. Sanguinetti,et al.  Exciton fine structure in strain-free GaAs/Al 0.3 Ga 0.7 As quantum dots: Extrinsic effects , 2008 .

[115]  A J Shields,et al.  Coherent dynamics of a telecom-wavelength entangled photon source , 2014, Nature Communications.

[116]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[117]  O. Schmidt,et al.  Triggered indistinguishable single photons with narrow line widths from site-controlled quantum dots. , 2013, Nano letters.

[118]  K. Thonke,et al.  Droplet epitaxy of zinc-blende GaN quantum dots , 2010 .

[119]  Yasuhiko Arakawa,et al.  A gallium nitride single-photon source operating at 200 K , 2006, Nature materials.

[120]  N. Gisin,et al.  Phase-noise measurements in long-fiber interferometers for quantum-repeater applications , 2007, 0712.0740.

[121]  M. Kamp,et al.  Strain-driven growth of GaAs(111) quantum dots with low fine structure splitting , 2014 .

[122]  Oliver G. Schmidt,et al.  Universal shapes of self-organized semiconductor quantum dots , 2004 .

[123]  Mohamed Henini,et al.  Carrier thermal escape and retrapping in self-assembled quantum dots , 1999 .

[124]  F Schmidt,et al.  Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography , 2015, Nature Communications.

[125]  Xiang Guo,et al.  Parametric down-conversion photon-pair source on a nanophotonic chip , 2016, Light: Science & Applications.

[126]  O. Schmidt,et al.  Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot , 2011 .

[127]  Marijn A. M. Versteegh,et al.  Semiconductor devices for entangled photon pair generation: a review , 2017, Reports on progress in physics. Physical Society.

[128]  A J Shields,et al.  A quantum light-emitting diode for the standard telecom window around 1,550 nm , 2017, Nature Communications.

[129]  D Bimberg,et al.  Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots. , 2005, Physical review letters.

[130]  M. Kamp,et al.  Temperature dependency of the emission properties from positioned In(Ga)As/GaAs quantum dots , 2014 .

[131]  G. Salamo,et al.  Low density InAs quantum dots grown on GaAs nanoholes , 2006 .

[132]  Kazuaki Sakoda,et al.  Extremely high-density GaAs quantum dots grown by droplet epitaxy , 2012 .

[133]  Nakamura,et al.  Strain relaxation in InAs/GaAs(111)A heteroepitaxy , 2000, Physical review letters.

[134]  France.,et al.  Germanium-based quantum emitters for time-reordering entanglement scheme with degenerate exciton and biexciton states , 2014, 1412.4520.

[135]  Kazuaki Sakoda,et al.  Self-assembly of concentric quantum double rings. , 2005, Nano letters.

[136]  Vanishing fine-structure splittings in telecommunication-wavelength quantum dots grown on (111)A surfaces by droplet epitaxy , 2014, 1406.4576.

[137]  Piotr Martyniuk,et al.  Quantum-dot infrared photodetectors: Status and outlook , 2008 .

[138]  O. Schmidt,et al.  Ultra-small excitonic fine structure splitting in highly symmetric quantum dots on GaAs (001) substrate , 2013 .

[139]  R. C. Macridis A review , 1963 .

[140]  Kyland Holmes,et al.  Self-organization of quantum-dot pairs by high-temperature droplet epitaxy , 2006, Nanoscale Research Letters.

[141]  S. Sanguinetti,et al.  Photon antibunching in double quantum ring structures , 2009 .

[142]  A. Luque,et al.  The influence of quantum dot size on the sub-bandgap intraband photocurrent in intermediate band solar cells , 2012 .

[143]  A. Schramm,et al.  Regimes of GaAs quantum dot self-assembly by droplet epitaxy , 2007 .

[144]  H. S. Vandiver Quantum , 2000, Posthumanism and the Digital University.

[145]  E. Ivchenko,et al.  Magnetic field induced valence band mixing in [111] grown semiconductor quantum dots , 2012, 1211.6854.

[146]  S. Mendach,et al.  Highly uniform and strain-free GaAs quantum dots fabricated by filling of self-assembled nanoholes , 2009 .

[147]  D. Bimberg,et al.  Ultralong dephasing time in InGaAs quantum dots. , 2001, Physical review letters.

[148]  P. Senellart,et al.  High-performance semiconductor quantum-dot single-photon sources. , 2017, Nature nanotechnology.

[149]  D. Ritchie,et al.  Improved fidelity of triggered entangled photons from single quantum dots , 2006, quant-ph/0601187.

[150]  C. Somaschini,et al.  Fabrication of multiple concentric nanoring structures. , 2009, Nano letters.

[151]  Jian-Wei Pan,et al.  On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar. , 2016, Physical review letters.

[152]  Nikolai N. Ledentsov,et al.  Epitaxy of Nanostructures , 2003 .

[153]  Christian Schneider,et al.  Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency , 2010 .

[154]  A J Shields,et al.  Indistinguishable entangled photons generated by a light-emitting diode. , 2012, Physical review letters.

[155]  S. F. Covre da Silva,et al.  Strain-Tunable GaAs Quantum Dot: A Nearly Dephasing-Free Source of Entangled Photon Pairs on Demand. , 2018, Physical review letters.

[156]  K. Sakoda,et al.  Self-Assembly of Symmetric GaAs Quantum Dots on (111)A Substrates: Suppression of Fine-Structure Splitting , 2010 .

[157]  Robert E. Jones,et al.  Status and Outlook , 2008 .