Configuration flexibility and extended regimes in Large Helical Device

Recent experimental results in the Large Helical Device have indicated that a large pressure gradient can be formed beyond the stability criterion for the Mercier (high-n) mode. While the stability against an interchange mode is violated in the inward-shifted configuration due to an enhancement of the magnetic hill, the neoclassical transport and confinement of high-energy particle are, in contrast, improved by this inward shift. Mitigation of the unfavourable effects of MHD instability has led to a significant extension of the operational regime. Achievements of the stored energy of I MJ and the volume-averaged beta of 3% are representative results from this finding. A confinement enhancement factor above the international stellarator scaling ISS95 is also maintained around 1.5 towards a volume-averaged beta, (beta), of 3%. Configuration studies on confinement and MHD characteristics emphasize the superiority of the inward-shifted geometry to other geometries. The emergence of coherent modes appears to be consistent with the linear ideal MHD theory; however, the inward-shifted configuration has reduced heat transport in spite of a larger amplitude of magnetic fluctuation than the outward-shifted configuration. While neoclassical helical ripple transport becomes visible for the outward-shifted configuration in the collisionless regime, the inward-shifted configuration does not show any degradation of confinement deep in the collisionless regime (nu* < 0.1). The distinguished characteristics observed in the inward-shifted configuration help in creating a new perspective of MHD stability and related transport in net current-free plasmas. The first result of the pellet launching at different locations is also reported.

Kozo Yamazaki | Masaki Osakabe | Shigeru Inagaki | Takashi Shimozuma | Osamu Motojima | N. Ohyabu | Hiroshi Yamada | Kunizo Ohkubo | Masahiko Isobe | Osamu Kaneko | Shigeru Morita | Tokihiko Tokuzawa | Konstantin V. Khlopenkov | W. A. Cooper | Hideo Sugama | Masayuki Yokoyama | Hiroshi Idei | Y. Takeiri | Takashi Mutoh | Masahiko Emoto | Ryuhei Kumazawa | P. W. Fisher | Akio Sagara | Shin Kubo | Yoshiro Narushima | Kenji Tanaka | Yoshio Nagayama | T. Uda | Motoshi Goto | Kazuo Kawahata | Naoko Ashikawa | Noriyoshi Nakajima | Suguru Masuzaki | Larry R Baylor | I. Yamada | T. Kobuchi | T. Minami | J. Miyazawa | K. Narihara | T. Notake | Y. Oka | S. Sudo | Satoru Sakakibara | Mitsuo Shoji | H. Funaba | H. Sasao | Akio Komori | Kazuo Toi | Sadayoshi Murakami | Katsumi Ida | Masami Fujiwara | Tetsuo Seki | Tomohiro Morisaki | Sadatsugu Muto | Katsuyoshi Tsumori | T. Watari | Kiyohiko Nishimura | Yuji Nakamura | Ryuichi Sakamoto | K. N. Sato | Satoshi Ohdachi | Takashi Satow | Hideya Nakanishi | K. Kawahata | S. Murakami | A. Sagara | Tsuguhiro Watanabe | T. Morisaki | R. Sakamoto | O. Motojima | K. Watanabe | N. Ohyabu | T. Mutoh | R. Kumazawa | S. Masuzaki | T. Seki | J. Miyazawa | M. Goto | B. Peterson | N. Ashikawa | K. Saito | S. Sakakibara | T. Tokuzawa | K. Narihara | I. Yamada | A. Komori | K. Yamazaki | M. Fujiwara | T. Satow | T. Uda | L. Baylor | G. Rewoldt | H. Yamada | M. Emoto | H. Funaba | K. Ida | H. Idei | O. Kaneko | S. Kubo | T. Minami | S. Muto | Y. Nagayama | H. Nakanishi | K. Nishimura | N. Noda | T. Kobuchi | Y. Oka | M. Osakabe | T. Ozaki | H. Sasao | M. Sasao | M. Sato | T. Shimozuma | H. Suzuki | Y. Takeiri | K. Tsumori | M. Yokoyama | T. Watari | K. Ohkubo | S. Sudo | Y. Yoshimura | T. Notake | Y. Liang | H. Sugama | T. Kuroda | N. Nakajima | K. Itoh | K. Tanaka | N. Tamura | Y. Narushima | S. Inagaki | M. Shoji | Y. Xu | A. Kostrioukov | Y. Xu | Byron J. Peterson | S. Morita | K. Y. Watanabe | Y. Liang | K. Matsuoka | K. Saito | Tetsuo Ozaki | S. Yamamoto | Y. Yoshimura | N. Inoue | N. Noda | H. Suzuki | Tsutomu Kuroda | Y. Torii | K. Ikeda | S. Yamamoto | Kuninori Sato | K. Itoh | M. Sasao | Tsuguhiro Watanabe | K. Ikeda | Yuki Torii | M. Sato | G Rewoldt | A. Kostrioukov | N. Tamura | N. Inoue | S. Ohdachi | Y. Nakamura | M. Isobe | K. Matsuoka | K. Toi | K. V. Khlopenkov

[1]  T. K. Chu,et al.  Class of model stellarator fields with enhanced confinement , 1982 .

[2]  Kozo Yamazaki,et al.  Progress summary of LHD engineering design and construction , 2000 .

[3]  S. Hirshman,et al.  Analysis of neoclassical transport in the banana regime with the DKES code for the large helical device , 1992 .

[4]  Thermal transport barrier in heliotron-type devices (Large Helical Device and Compact Helical System) , 2000 .

[5]  K. Kawahata,et al.  Experiments on NBI plasmas in LHD , 1999 .

[6]  R. A. Dory,et al.  SPECIAL TOPIC: Energy confinement scaling from the international stellarator database , 1995 .

[7]  K. Kawahata,et al.  MHD characteristics in the high beta regime of the Large Helical Device , 2000 .

[8]  S. Hirshman,et al.  Shafranov shift in the low aspect ratio heliotron/torsatron Compact Helical System , 1992 .

[9]  M. Shoji,et al.  An Overview of the Large Helical Device Project , 1998 .

[10]  Hiroshi Yamada,et al.  Photon-counting CCD detector as a tool of x-ray imaging , 2001 .

[11]  M. Okamoto,et al.  Ion temperature gradient modes in toroidal Helical systems , 2000 .

[12]  N Inoue,et al.  Energy confinement and thermal transport characteristics of net current free plasmas in the Large Helical Device , 2000 .

[13]  Murakami,et al.  Energy confinement time and heat transport in initial neutral beam heated plasmas on the large helical device , 2000, Physical review letters.

[14]  K. Uo The Helical Heliotron field for plasma confinement , 1971 .

[15]  K. Kawahata,et al.  Improved plasma performance on Large Helical Device , 2001 .

[16]  Kozo Yamazaki,et al.  Initial physics achievements of large helical device experiments , 1999 .

[17]  Atsushi Fukuyama,et al.  Transport simulation on L-mode and improved confinement associated with current profile modification , 1995 .

[18]  Drift mode calculations for the Large Helical Device , 2000 .

[19]  A Cooper,et al.  Variational Formulation of the Linear Mhd Stability of 3d-Plasmas with Noninteracting Hot-Electrons , 1992 .

[20]  K. Kawahata,et al.  Plasma confinement studies in LHD , 1999 .

[21]  Kozo Yamazaki,et al.  Overview of LHD experiments , 2001 .

[22]  Murakami,et al.  Edge thermal transport barrier In LHD discharges , 2000, Physical review letters.

[23]  P. W. Fisher,et al.  Development of pellet injector system for large helical device , 2000 .

[24]  L. Baylor,et al.  Deposition of Fuel Pellets Injected into Tokamak Plasmas , 1998 .

[25]  Larry R Baylor,et al.  Radial displacement of pellet ablation material in tokamaks due to the grad-B effect , 2000 .

[26]  K. Kawahata,et al.  Plasma startup by neutral beam injection in the Large Helical Device , 1999 .

[27]  Masao Okamoto,et al.  Finite β Effects on the ICRF and NBI Heating in the Large Helical Device , 1995 .

[28]  Peter Lang,et al.  High-efficiency plasma refuelling by pellet injection from the magnetic high-field side into ASDEX upgrade , 1997 .

[29]  Crpp Papers presented at the 28th EPS Conference on Controlled Fusion and Plasma Physics, Funchal, Madeira, Portugal, June 2001 , 2001 .

[30]  Y. Takeiri,et al.  Scalings of energy confinement and density limit in stellarator/heliotron devices , 1990 .

[31]  M. Okamoto,et al.  Effects of net toroidal current on the Mercier criterion in the Large Helical Device , 1992 .

[32]  P. C. de Vries,et al.  Impact of pellet injection on extension of the operational region in LHD , 2000 .